donmigel_62: (кот - учёный)
2014-03-18 11:57 am

Открытие, достойное Нобелевской премии

Открытие, достойное Нобелевской премии

Астрономы обнаружили следы гравитационных волн в реликтовом излучении, подтвердив инфляционную модель Вселенной. По свидетельству ведущих ученых всего мира, это долгожданное открытие вскоре будет номинировано на Нобелевскую премию по физике.




Краткая история Большого Взрыва

Вчера на объявленной заранее пресс-конференции, которая вызвала небывалый ажиотаж в научном мире, было сказано об открытии новых доказательств, поддерживающих инфляционную модель Вселенной.

Исследователи утверждают, что им удалось зарегистрировать небесный сигнал, возникший вследствие сверхбыстрого расширения Вселенной спустя доли секунды после Большого Взрыва.

Разумеется, результаты исследований должны быть перепроверены независимыми специалистами, но ученые с мировым именем, ознакомившиеся с представленными данными, не сомневаются в их аутентичности. Скорее всего, авторы этой работы совсем скоро будут номинированы на Нобелевскую премию по физике.











Результаты были получены американской группой исследователей, работающей над проектом BICEP2. Им удалось обработать данные радиотелескопа на Южном полюсе, непрерывно регистрирующего небесные сигналы.

Гравитационные волны в процессе инфляции Вселенной оставили специфические следы в поляризации реликтового излучения

©BICEP2

Ученые пытались найти определенные следы инфляции Вселенной − экспоненциального расширения космоса непосредственно после Большого Взрыва.


Инфляционная модель Вселенной предсказывает появление гигантских гравитационных волн непосредственно после рождения мира, которые должны оставить след в реликтовом микроволновом излучении, уже давно обнаруженном астрономами.


Именно такие следы, т.е. поляризация магнитной моды (В-моды) излучения, и были обнаружены исследователями в процессе эксперимента BICEP2. Только гравитационные волны, возникшие в результате инфляционной фазы расширения Вселенной, могли оставить подобную метку в реликтовом излучении.

Гравитационные волны были предсказаны Альбертом Эйнштейном еще 100 лет назад в его знаменитой общей теории относительности (ОТО). Таким образом, попутно удалось получить еще одно убедительное доказательство ОТО.

Перед нами открываются небывалые перспективы в совершенно новой области физики, которая будет изучать явления, происходившие непосредственно после Большого Взрыва. 

− Профессор Джон Ковач, глава группы BICEP2

Самое удивительное, что обнаруженные следы в сигнале оказались намного сильнее, чем на это рассчитывали ученые. Это позволяет автоматически исключить целый ряд теорий в инфляционной модели Вселенной.

Один из авторов открытия, Чао-Лин Куо, пришел в гости к советско-американскому физику Андрею Линде, чтобы рассказать об экспериментальном подтверждении хаотической теории инфляции, разработанной им в 1982 году

©YouTube/ StanfordUniversity


источник



donmigel_62: (кот - учёный)
2014-03-17 08:52 pm

Великое открытие в области астрофизики!


Ровно в 20:00 по московскому времени в Гарвард-Смитсоновском центре астрофизики на  пресс-конференци, в режиме онлайн было объявлено о крупнейшем открытии в области астрофизики. Ожидания мирового научного сообщества оправдались. На конференции было объявлено о регистрации реликтовых гравитационных волн, предсказанных общей теорией относительности (ОТО) Альберта Эйнштейна 100 лет назад.Эти гравитационные. волны были произведены на раннем этапе развития Вселенной, процессами, предсказанными Стивеном Хокингом .

Это грандиозное открытие не только подтверждает теорию Эйнштейна, но и является доказательством инфляционной модели, которая предполагает ускоренное расширение Вселенной на ранней стадии Большого Взрыва.

На пресс-конференции рассказали об эксперименте BICEP2. Цель эксперимента - измерение магнитной моды поляризации реликтового излучения. BICEP2 - продолжение эксперимента BICEP1, за три года были получены результаты, которые равны 30-летним результатам эксперимента BICEP1.  BICEP2 - это 512 детекторов на частоте 150 GHz.

Полученные результаты позволяют отсеять множество некорректных гипотез и сосредоточить усилия физиков в правильном направлении.

Ученые предупреждают, что их данные должны подвергнуться тщательной проверке со стороны других групп исследователей. . Прежде чем экспериментальное доказательство существования гравитационных волн будет подтверждено, может пройти несколько месяцев.

Все подробности - завтра.

donmigel_62: (кот - учёный)
2014-03-14 04:07 pm
Entry tags:

135 лет со дня рождения Альберта Эйнштейна

135 лет со дня рождения Альберта Эйнштейна

135 лет назад родился Альберт Эйнштейн. Его имя уже давно стало нарицательным: мы говорим Эйнштейн, подразумеваем – гениальность. Легендарный ученый, автор теории относительности, до сих пор остается одной из самых загадочных фигур научного мира.

Будущий нобелевский лауреат родился 14 марта 1879 года в немецком городке Ульме. Первое научное исследование Эйнштейна состоялось, когда ему исполнилось три года. На день рождения родители подарили маленькому Альберту компас, который впоследствии стал его любимой игрушкой. Потом семья Эйнштейна переехала в Мюнхен, и будущий физик стал обучаться в гимназии. Но он был необычным школьником: любимые науки он предпочитал изучать самостоятельно. Это, безусловно, дало свои результаты: в 16 лет Эйнштейн владел дифференциальными и интегральными исчислениями. При этом он много читал и прекрасно играл на скрипке.


Университет Эйнштейну удалось окончить не только с высоким баллом, но и с отрицательной характеристикой преподавателей: в учебном заведении будущий великий физик слыл заядлым прогульщиком. Позднее Эйнштейн признается, что у него "просто времени не было ходить на занятия".

Общую теорию относительности, свой шедевр, Альберт Эйнштейн завершил в 1915 году в Берлине. В ней излагалась совершенно новое представление о пространстве и времени. Эта работа предсказывала к тому же отклонение световых лучей в гравитационном поле, что впоследствии подтвердили ученые.

Однако Нобелевскую премию по физике в 1922 году Эйнштейн получил не за свою гениальную теорию: он объяснил фотоэффект (выбивание электронов из некоторых веществ под действием света). Всего за одну ночь ученый стал знаменит на весь мир.

Эйнштейн всегда был отчаянным пацифистом. Из-за своих антимилитаристских взглядов в Германии ученый постоянно подвергался преследованиям, несмотря на мировое признание. В конце 1922 года Эйнштейн покидает Германию и отправляется в путешествие. Тогда в Палестине, он торжественно открывает Еврейский Университет в Иерусалиме.

Когда в 1933 году к власти пришел Гитлер, Альберт Эйнштейн принял окончательное решение покинуть Германию. Весной 1933 года он заявил о своем выходе из Прусской Академии наук и эмигрировал в США, где получил американское гражданство. Больше на родину он не вернулся.

Альберт Эйнштйен мог бы стать президентом Израиля: после смерти  Хаима Вейзманна в 1952 году, премьер-министр Израиля Давид Бен-Гурион пригласил Эйнштейна на должность президента страны. На что великий физик ответил: "Я глубоко тронут предложением государства Израиль, но с сожалением и прискорбием должен его отклонить".

Умер Эйнтштейн 18 апреля 1955 года в возрасте 76 лет. О похоронах Эйнштейна знал только ограниченный круг людей. По легенде, вместе с ним закопали пепел его работ, которые он сжег перед кончиной. Сам Эйнштейн считал, что они могут навредить человечеству.

donmigel_62: (кот - учёный)
2014-02-25 10:14 am

Как квазары помогут проверить квантовую механику

Как квазары помогут проверить квантовую механику

Эйнштейновские сомнения в верности основных постулатов квантовой механики можно ещё раз опровергнуть — хотя, увы, и не до конца.
Не секрет, что Альберт Эйнштейн сомневался в достижениях коллег, занимавшихся квантовой механикой. Принцип неопределённости Гейзенберга, уравнение Шрёдингера — это всё замечательно, считал он, но... здорово подрывает стабильность микромира.

Что конкретно его не устраивало — разговор очень длинный, поэтому сосредоточимся на самых острых моментах. Квантовая механика (КМ), как было ясно уже тогда, описывает микромир в терминах волновых функций и вероятностей. То есть, несколько упрощая, координата и скорость частицы могут быть известны до какой-то степени, и с некоей вероятностью частица (электрон, скажем) будет в одном месте, а с какой-то — в ином. Точные измерения и расчёт параметров их движения а-ля определение траекторий планет нереальны, и это, полагал Эйнштейн, не очень-то похоже на то, какой должна быть физика. Если попытаться свести его возражения в единое целое, то учёный считал, что необходимость использования принципа неопределённости и вероятностного подхода к выяснению скорости и координат частиц в КМ является не результатом реальной «плавающей» природы микромира, а итогом неполного понимания КМ-поклонниками этой самой реальной картины микромира: их представлениям о нём не хватает каких-то важных деталей, чего-то мы в микромире упорно не видим.

Квазар 3C 186, один из самых далёких среди всех известных. Ещё один такой объект на радикально другом участке земного неба — и теорему Белла можно будет проверить с невиданным размахом. (Иллюстрация NASA / CXC / SAO / A.Siemiginowska et al., AURA / Gemini Obs.)



Нельзя сказать, что он был единственным сторонником подобных взглядов. Раздавались голоса: в самом деле, почему мы не можем точно одновременно узнать скорость и координаты частицы? Возьмём квантовый объект, опять-таки электрон. Чтобы измерить его параметры, надо устроить ему сеанс взаимодействия с другим квантовым объектом. Такое взаимодействие квантовых по природе объектов непременно закончится изменением состояния измеряемого (отсюда и ноги у принципа неопределённости). Но что если есть иной способ измерения, без условных электронов, с помощью неких инструментов, которые позволяли бы, во-первых, определить параметры электрона, а во-вторых, «не трогать» его?

В 1960-х появилась так называемая теорема Белла. Чтобы ответить на вопрос, существуют ли такие «чудесные» способы измерения «скрытого параметра», влияющего на любую физическую характеристику квантовой частицы, Джон Стюарт Белл предложил провести следующий эксперимент. Под внешним воздействием любой природы атом синхронно заставляют испускать две частицы (фотоны) в противоположных направлениях. Потом эти частицы «ловятся», и инструментально определяется направление их спина. Проделать это надо было очень много раз, иначе не накопить нужной статистики, и сделать это в конечном счёте удалось, попутно заложив основы квантовой криптографии, так как оба фотона в этом случае квантово запутаны. Тогда и выяснилось, что волновая функция распределения вероятностей действительно безошибочно описывает движение частиц от источника к детектору. То есть уравнения волновой квантовой механики не содержат скрытых переменных. Победа?

Не совсем. Теоретики изобретательны, и, по идее, волновые функции могут выполняться даже не будучи верными, если есть некий неявный способ взаимодействия детекторов с квантовой системой, который маскирует наличие классических связей между ними и заставляет нас видеть неклассическую физику там, где её нет. Опять же подтянулись вот такие объяснения: если допустить возможность путешествий во времени (в прошлое, со свободой действий) или то, что далёкое общее прошлое до возникновения запутанной пары заранее определяет как её поведение, так и все скрытые переменные, связанные с измерениями её параметров, то так называемая КМ всё же может быть по сути классической.

Так что эпидемия экспериментальных проверок теоремы Белла на самом разном экспериментальном материале далеко не закончилась — как и многочисленные проверки ОТО на разнообразнейших объектах.

И вот теперь исследователи во главе с Джейсоном Галличчио (Jason Gallicchio) из Чикагского университета (США) предложили использовать свет от квазаров на противоположных сторонах неба (в разных «концах» Вселенной), чтобы проверить теорему Белла при помощи, так сказать, особо большой лаборатории.

Что это даёт? Ну, смотрите сами: чёрные дыры в максимально удалённых друг от друга концах Вселенной, вызывающие свечение возле своих аккреционных дисков и выбрасывающие материю из своих окрестностей, так далеки, что информация от одной из них никакими классическими средствами не может дойти до другой за всё то время, что существует Вселенная. То есть без грубого мухлевания вроде путешествий во времени утверждать о наличии связи между такими источниками излучения не приходится. Использовав свет от далёких квазаров для настройки детекторов обычной лаборатории, можно гарантировать, что если какие-то скрытые взаимодействия между детекторами и частицами и бывают, то детекторы, сконфигурированные на основе наблюдений разных квазаров, дадут одни результаты, а сконфигурированные стандартными случайностными процедурами — другие.

Обычный тип лабораторного эксперимента по проверке теоремы Белла оперирует двумя фотонами с противоположной поляризацией. Экспериментатор не может узнать поляризационное состояние любого из них без выполнения измерения, а как только он выяснит поляризацию одного фотона, это немедленно повлияет на любые измерения состояний другого фотона, причём даже если между ними будет, например, 90 млрд световых лет. Даже если учёные рандомизируют конфигурацию обоих детекторов, чтобы гарантировать отсутствие между ними какой-либо связи, измерения обоих фотонов в разных концах Вселенной должны дать кореллирующийся результат.

Критики такого подхода объясняют нам, что всё это лишь кажется экспериментаторам. Сторонники локального реализма считают, что во вроде бы запутанном состоянии фотоны связаны посредством той самой «скрытой переменной», которая в разных районах пространства изначально неодинакова, однако за время эксперимента может быть передана посредством детекторов.

Использование двух квазаров посредством такой гипотетической «скрытой переменной» приравнивает время корреляции не к миллисекундам, как в лабораторных условиях, а к миллиардам лет. В идеале для этого нужно наблюдать пару квазаров, свет от которых шёл до Земли 12 млрд лет (и таких кандидатов много), разделённых на нашем небе 180°. Увы, для этого эксперимент надо проводить в космосе, поскольку на Земле одновременно наблюдать противоположные две точки неба таким образом не получится, но и 130°, по расчётам авторов, будет достаточно, чтобы решить все проблемы с независимостью конфигурации детекторов.

В этом случае частицы обоих далёких квазаров, по идее, никогда не взаимодействовали друг с другом со времён очень ранней Вселенной, и почти любая возможность сохранения в столь отдалённых местах пар запутанных частиц к данному моменту должна быть исчерпана. Тем самым скрытая переменная не сможет связать показания двух детекторов, поскольку в этих локациях она будет радикально разной, а временной разрыв — слишком большим.

При этом фотоны от одного квазара предлагается использовать для ориентации одного поляризационного фильтра, и так далее. Если скрытая переменная существует, тогда результаты двух фильтров будут разными — и это пойдёт вразрез с предсказаниями КМ, что укажет на её неполноту.

Ещё более выпуклым вариантом такого эксперимента может быть использование фотонов реликтового излучения с противоположных участков земного неба (идущих из мест, более отдалённых, чем любые квазары) — для такой же настройки поляризационных фильтров, хотя в этом случае некоторые проблемы может вызвать избыток шума, затрудняющего организацию эксперимента.

Схема предложенного эксперимента.

Увы, даже после его проведения проблемы с локальным реализмом полностью не исчезнут. Предположим, что результаты всех опытов по квантовому запутыванию были предопределены до Большого взрыва через локальные скрытые переменные. В этом случае каждый эксперимент даст одинаковые результаты вне зависимости от того, существует ли скрытая переменная или права квантовая механика, и мы никогда не узнаем, как же обстоят дела на самом деле. Но авторы не зря называют такой итог «супердетерминистским космическим заговором»: предположения такого рода, мягко говоря, сложно проверить, не говоря уже о тех допущениях, которые они требуют.

Тем не менее в случае реализации предложенного эксперимента вопрос о чайниках Рассела — принципиально непроверяемых и неопровергаемых теорий, которые нет смысла рассматривать в научной дискуссии, — отпадёт. Что, бесспорно, будет существенным КМ-достижением.

Отчёт об исследовании вскоре появится в журнале Physical Review Letters, а с его препринтом можно ознакомиться здесь.

Подготовлено по материалам Ars Technica. Изображение на заставке принадлежит Shutterstock


donmigel_62: (кот - учёный)
2014-02-06 08:03 pm

Чем квантовая механика способна помочь холодильнику Эйнштейна?

Чем квантовая механика способна помочь холодильнику Эйнштейна?

Холодильник — хоть квантовый, хоть классический — в общем и целом отводит тепло от охлаждаемого объекта сначала в какую-то рабочую ёмкость, а затем в окружающую среду. Казалось бы, что тут можно поправить квантовой механикой?

Стандартный холодильник использует внешний источник энергии, а в случае абсорбционного холодильника по типу эйнштейновского — дополнительный внешний источник тепла. В отличие от обычных, последнему почти не нужна электроэнергия (нет компрессора), и, так как он не имеет движущихся частей, «эйнштейновец» почти не шумит.

Всё три предложенные модели квантового абсорбционного холодильника состоят из трёх объемов — горячего, холодного и рабочего. (Здесь и ниже иллюстрации Correa, et al.)


Увы, холодильник, созданный физиками Эйнштейном и Силардом, до конвейера не добрался. Можно долго разливаться соловьём о причинах, но не мы не будем. Просто констатируем: без инженерной доводки вообще мало что «идёт в серию», а тратить на это деньги было некому, да и основные интересы изобретателей лежали несколько в иной плоскости. А кроме них, эти холодильники никого особенно не интересовали: даже «Электролюкс» купил патент на них в 1930-х скорее на всякий случай. В итоге без доводки они не слишком хорошо охлаждали, если вес и размеры установки были небольшими, а при равных охладительных возможностях были в два–три раза крупнее современных устройств.

Учёные во главе с Луисом Корреа (Luis A. Correa) из Университета Ла Лагуна (Испания) взялись определить, каковы лимиты эффективности подобной схемы и нельзя ли поднять её практическую производительность. Чтобы не возиться со слишком простой задачей, заодно они попробовали узнать, можно ли использовать квантовомеханические принципы для повышения эффективности таких устройств.

В частности, им удалось выяснить, что если рабочий резервуар находится в сжатом состоянии — одном из чистых (когерентных) состояний квантовых систем, — то в системе возникают неклассические флуктуации, и тогда квантовый вариант холодильника Эйнштейна по эффективности может превосходить классический термодинамический лимит для подобного рода устройств. Учёные называют такой тип его работы «сверхэффективным» и утверждают, что для его достижения достаточно привести в сжатое состояние только источник тепла.

По их словам, применение сжатого состояния к рабочему объёму холодильника ведёт к значительному росту охлаждающих возможностей такой установки, и в принципе ценой умеренного увеличения потребления энергии можно добиться ситуации, когда температура внешнего источника тепла в среднем не увеличивается, но в термодинамическом описании работы холодильника (за счёт флуктуаций) она будет казаться растущей.

Оригинальный холодильник Эйнштейна — Силарда.

На первый взгляд, исследование не может иметь быстрого практического применения: те «квантовые холодильники», которые учёные собираются испытать экспериментально, поначалу будут делаться из алмазов, что выглядит не слишком практичным. Тем не менее сам вывод о том, что эффективность квантовых устройств на деле может превышать показатели классических приборов, довольно любопытен, и в ряде опытных установок квантовые холодильники вполне могут представлять практический интерес уже сегодня. В перспективе же испанцы предполагают производить эти не требующие сетевого энергопитания аппараты как минимум для использования в районах, лишённых стабильного доступа к электричеству.

Отчёт об исследовании опубликован в журнале Nature Scientific Reports, а с его препринтом можно ознакомиться здесь.

Подготовлено по материалам Phys.Org.

donmigel_62: (кот - учёный)
2014-01-22 05:08 am

Почему Эйнштейн всегда будет прав

Почему Эйнштейн всегда будет прав

Эйнштейн

Астрофизики шутят, что один из плюсов быть астрофизиком — это каждую неделю получать письма от тех, кто «доказал, что Эйнштейн ошибался». Но эти письма либо не содержат математические уравнения и используют фразы типа «очевидно, что…», либо наполнены сложными уравнениями с десятками научных терминов, которые используются нетрадиционным способом. В частности, это касается и постсоветского пространства. Все письма быстро отметаются, и не только потому, что «проедающие деньги налогоплательщиков» астрофизики слишком «зомбированы» существующей теорией, а потому что никто из них не знает, как теорию можно заменить.


К примеру, в конце 18 века существовала теория тепла, известная как калорическая. Основная идея калорической теории была в том, что внутри материалов находится жидкость. Она выступает в роли само-репеллента, то есть будет пытаться распространиться как можно сильнее и равномернее. Мы не можем наблюдать эту жидкость, но чем больше калорий будет у материала, тем выше будет температура.

Из этой теории вышло несколько предсказаний, которые действительно работают. Поскольку вы не можете уничтожать или создавать калории, энергия тепла сохраняется. Если вы положите холодный объект рядом с горячим, калорийность горячего объекта будет действовать и на холодный, пока тот не нагреется. Когда воздух расширяется, калории распространяются хуже, температура падает. Когда воздух сжимается, калории также сжимаются в объеме, и температура растет.

Теперь мы знаем, что нет «тепловой жидкости». Тепло является свойством движения (кинетической энергией) атомов или молекул в материале. Таким образом, физики заменили калорическую модель кинетической теорией. Теперь мы можем утверждать, что калорическая модель совершенно неверна.

Однако это не так. По крайней мере, она не особо преуспела в своей ошибочности с момента создания.

Основное предположение «тепловой жидкости» не соответствует реальности, но модель сделала предсказания, которые верны. По сути, калорическая модель работает так же хорошо, как в конце 18 века. Мы не используем ее потому, что у нас есть более хорошие модели, которые работают лучше. Кинетическая теория делает все те же прогнозы, что и калорическая, а также многое другое. Кинетическая теория даже объясняет, как тепловую энергию материала можно представить в виде жидкости.

Это ключевой аспект научных теорий. Если вы хотите заменить надежную научную теорию новой, новая теория должна быть в состоянии сделать больше, чем старая. При замене старой теории вы осознаете ее пределы и ограничения и знаете, куда двигаться дальше.

Иногда даже после вытеснения старой теории, мы продолжаем ею пользоваться. Простой пример — закон всемирного тяготения Ньютона. Когда Ньютон предложил свою теорию всемирного тяготения в 17 веке, он описал гравитацию как силу притяжения между всеми массами. Это позволило правильно рассчитать движение планет, открыть Нептун, основное соотношение между массой звезды и ее температурой и так далее. Ньютоновская гравитация была и остается надежной научной теорией.

В начале 20 веке Эйнштейн предложил другую модель, известную как общая теория относительности. Основной предпосылкой этой теории является то, что гравитация связана с искривлением пространства и времени. Несмотря на то, что гравитационная модель Эйнштейна радикально отличается от ньютоновской, математика показывает, что уравнения Ньютона являются приблизительными решениями уравнений Эйнштейна. Все, что предсказал Ньютон, предсказал и Эйнштейн. Однако Эйнштейн также дал нам возможность правильно смоделировать черные дыры, Большой Взрыв, прецессию орбиты Меркурия, замедление времени и многое другое, что было подтверждено экспериментально.

Так что Эйнштейн «круче» Ньютона. Но с теорией Эйнштейна сложнее работать, чем с ньютоновской, поэтому зачастую мы просто используем уравнения Ньютона. Например, чтобы рассчитать движение спутников или экзопланет. Если нам не нужна точность теории Эйнштейна, мы идем к Ньютону, чтобы получить ответ, который является «вполне хорошим». Мы можем доказать, что Ньютон ошибался, но его теория по-прежнему полезна и точна, как и всегда.

К сожалению, многие начинающие эйнштейны этого не понимают.

Стоит начать с того, что эйнштейновская гравитация никогда не будет опровергнута теорией. Она будет опровергнута экспериментальными данными, которые покажут, что предсказания общей теории относительности не работают. Теория Эйнштейна не вытеснит ньютоновскую, пока мы не получим экспериментальные данные, которые будут соглашаться с Эйнштейном и расходиться с Ньютоном во взглядах. Так что если у вас нет экспериментальных доказательств, которые явно противоречат общей теории относительности, попытки «опровергнуть Эйнштейна» будут оставаться за бортом.

Другой способ развенчать Эйнштейна — это разработать теорию, которая очевидно покажет, что теория Эйнштейна по сравнению с ней приблизительная, а все экспериментальное прошлое общей теории относительности сочетается и с этой теорией. В идеале, в рамках новой теории можно будет сделать новые предсказания, которые можно будет и проверить в разумных пределах. Если вы можете сделать это и представить идеи ясно, вы будете услышаны. Теория струн и энтропийная гравитация — примеры моделей, которые попытались это сделать.

Но даже если кто-то преуспеет в создании теории, которая превзойдет эйнштейновскую (и кто-то наверняка это сделает), теория Эйнштейна все равно будет работать, как и раньше. Эйнштейн никогда не ошибется, мы просто расширим пределы его теории.

donmigel_62: (кот - учёный)
2013-12-24 09:16 am

«Встряхнуть» конденсат Бозе-Эйнштейна

Физики «встряхнули» конденсат Бозе-Эйнштейна

Физики изучили воздействие периодической внешней силы на конденсат Бозе-Эйнштейна. Такое воздействие, по их словам, можно представлять как обычную физическую встряску конденсата. Статья ученых появилась в журнале Physicale Review Letters, а ее краткое изложение приводится на сайте Американского физического общества.

Распад одного конденсата на множество конденсатов. Компьютерное моделирование Иллюстрация D.Vorberg et al.
Распад одного конденсата на множество конденсатов. Компьютерное моделирование Иллюстрация D.Vorberg et al.

Конденсат Бозе-Эйнштейна представляет собой систему, состоящую из бозонов, охлажденных до близкой к абсолютному нулю температуры. При таком охлаждении подавляющее большинство частиц оказывается в состоянии с минимальной энергией.

Как следствие, квантовые эффекты начинают проявляться на макроскопическом уровне. За получение этого конденсата в лаборатории в 1995 году Эрик Корнелл и Карл Виман были удостоены Нобелевской премии по физике 2001 года.


Как показали ученые в новой работе, воздействие периодической внешней силы приводит к «расщеплению» минимальных уровней. Конденсат разбивается на области, в которых частицы находятся на одном и том же новом уровне. Ученые говорят, что каждая из этих областей ведет себя как конденсат Бозе-Эйнштейна.

Свои выводы ученые подкрепили компьютерным моделированием. В частности, им удалось продемонстрировать динамику поведения такого конденсата – в нем частицы постоянно перетекают из области в область. Исследователи обнаружили также, что количество новых конденсатов всегда нечетно. Если количество областей четно, то некоторые достаточно быстро теряют все бозоны, пока число областей опять не станет нечетным.

По словам ученых, следующим шагом в исследовании должна стать экспериментальная проверка теоретических выводов.

Проверить их предлагается на известной экситонной модели конденсата Бозе-Эйнштейна. Роль бозонов в этой модели играют экситоныквазичастицы в полупроводнике, состоящие из связанных дырки и электрона. Встряску при этом предлагается моделировать с помощью лазера. Насколько хорошо такая модель будет соотносится с теорией, ученые ответить пока затрудняются.

В конце ноября исследователи из Австралии и Великобритании предложили способ пронаблюдать за конденсатом напрямую. Для этого ученые предложили использовать так называемую динамическую стабилизацию конденсата с помощью лазерного луча.