donmigel_62: (кот - учёный)

Физики «встряхнули» конденсат Бозе-Эйнштейна

Физики изучили воздействие периодической внешней силы на конденсат Бозе-Эйнштейна. Такое воздействие, по их словам, можно представлять как обычную физическую встряску конденсата. Статья ученых появилась в журнале Physicale Review Letters, а ее краткое изложение приводится на сайте Американского физического общества.

Распад одного конденсата на множество конденсатов. Компьютерное моделирование Иллюстрация D.Vorberg et al.
Распад одного конденсата на множество конденсатов. Компьютерное моделирование Иллюстрация D.Vorberg et al.

Конденсат Бозе-Эйнштейна представляет собой систему, состоящую из бозонов, охлажденных до близкой к абсолютному нулю температуры. При таком охлаждении подавляющее большинство частиц оказывается в состоянии с минимальной энергией.

Как следствие, квантовые эффекты начинают проявляться на макроскопическом уровне. За получение этого конденсата в лаборатории в 1995 году Эрик Корнелл и Карл Виман были удостоены Нобелевской премии по физике 2001 года.


Как показали ученые в новой работе, воздействие периодической внешней силы приводит к «расщеплению» минимальных уровней. Конденсат разбивается на области, в которых частицы находятся на одном и том же новом уровне. Ученые говорят, что каждая из этих областей ведет себя как конденсат Бозе-Эйнштейна.

Свои выводы ученые подкрепили компьютерным моделированием. В частности, им удалось продемонстрировать динамику поведения такого конденсата – в нем частицы постоянно перетекают из области в область. Исследователи обнаружили также, что количество новых конденсатов всегда нечетно. Если количество областей четно, то некоторые достаточно быстро теряют все бозоны, пока число областей опять не станет нечетным.

По словам ученых, следующим шагом в исследовании должна стать экспериментальная проверка теоретических выводов.

Проверить их предлагается на известной экситонной модели конденсата Бозе-Эйнштейна. Роль бозонов в этой модели играют экситоныквазичастицы в полупроводнике, состоящие из связанных дырки и электрона. Встряску при этом предлагается моделировать с помощью лазера. Насколько хорошо такая модель будет соотносится с теорией, ученые ответить пока затрудняются.

В конце ноября исследователи из Австралии и Великобритании предложили способ пронаблюдать за конденсатом напрямую. Для этого ученые предложили использовать так называемую динамическую стабилизацию конденсата с помощью лазерного луча.

donmigel_62: (кот - учёный)

Физики ЦЕРНа впервые "увидели" распад бозона Хиггса на фермионы


Физики ЦЕРНа впервые зафиксировали следы распада бозона Хиггса в фермионы — в b-кварки и тау-лептоны, подтвердив таким образом предсказания главной физической теории — Стандартной модели, говорится в сообщении на сайте эксперимента CMS.



«До сих пор прямые распады бозона Хиггса в фермионы не наблюдались. Было уже беспокойство в научном сообществе — по Стандартной модели это должно быть, и если бы не нашли эти распады, тогда это означало бы, что в этой части Стандартная модель не работает. Однако теперь их удалось выделить из фона, и это наблюдение находится в полном согласии с моделью», — сказал РИА Новости сотрудник НИИ ядерной физики МГУ и член коллаборации CMS Эдуард Боос.


Бозон Хиггсапоследний недостающий элемент Стандартной модели, частица, которая обеспечивает массу всех других элементарных частиц — был открыт летом 2012 года в экспериментах на Большом адронном коллайдере. Однако детекторы коллайдера не могут непосредственно зафиксировать рождение бозона Хиггса — он слишком быстро распадается на другие частицы. Приборы могут заметить только эти вторичные частицы.


«Хиггс» может распадаться на разные частицы, в этом случае физики говорят об определенном канале или «моде» распада.

В 2012 году детекторы ATLAS и CMS «поймали» бозон Хиггса, отслеживая его распад на пары Z-бозонов, и на гамма-фотоны. Причем достоверность этих результатов была очень высока. В частности, детектор CMS фиксировал рождение бозона Хиггса со статистической значимостью 7 стандартных отклонений (сигма) только в Z-канале, при том, что физики говорят об открытии на уровне 5 сигма, когда вероятность того, что наблюдаемый эффект вызван статистической флуктуацией, составляет лишь 1 на 3,5 миллиона.

Однако Стандартная модель предсказывала, что бозон Хиггса должен распадаться и на фермионы — тау-лептоны и пары b-кварк и b-антикварк. Только теперь, благодаря анализу данных с помощью нейронных сетей, ученым удалось вычленить следы «работы» этого канала распада. Статистическая достоверность этого открытия составляет 4 сигма — это означает, что вероятность «ложного срабатывания» составляет 1 к 16 тысячам.

Это открытие еще раз поддерживает вывод, что частица, открытая на коллайдере, действительно очень похожа на бозон Хиггса Стандартной модели.



«Если подтверждения не было, это может быть более интересно для физиков, но пока все предсказания Стандартной модели оправдываются. Хотя точность этого результата еще настолько невелика, что многие интерпретации еще не исключены, например минимальная суперсимметричная модель», — сказал Боос.


Существуют некоторые теоретические модели, которые предсказывают возможность существования многих разных бозонов Хиггса, один из которых ведет себя как «стандартный».

РИА Новости






donmigel_62: (кот - учёный)
Мегапроекты человечества: *Сверхбольшой адронный коллайдер и кварковый фонтан*

Мегапроекты человечества: Сверхбольшой адронный коллайдер и кварковый фонтан

Бозон Хиггса дал ученым больше вопросов, чем ответов. Чтобы найти решения для новых задач, группа американских специалистов предлагает создать новую гигантскую установку: Сверхбольшой адронный коллайдер в подземном тоннеле диаметром 100 километров. Интервью с одним из авторов идеи, американский физиком-теоретиком Майклом Пескином, о том, как будет устроен ускоритель и чем он похож на кварковый фонтан.

В ноябре ученые из США представили общественности концепцию создания Сверхбольшого адронного коллайдера. По прогнозам, его строительство может начаться уже в конце 2020-х годов. Колоссальное сооружение для сталкивания протонов будет почти в 4 раза больше и в 7 раз мощнее Большого адронного коллайдера (БАК), расположенного в толще породы близ Женевского озера на территории Франции и Швейцарии. Стоимость строительства установки может составить около 10 миллиардов долларов.

По прогнозам, мощность Сверхбольшого адронного коллайдера будет составлять порядка 100 тераэлектронвольт (ТэВ), а диаметр его тоннеля — до 100 километров. Место строительства пока не определено, однако специалисты надеются, что к экспериментам можно будет приступить не позже 2035 года, когда БАК прекратит свою работу. Впрочем, Большому адронному коллайдеру до этого момента еще предстоит пережить модернизацию. В феврале этого года коллайдер был остановлен для плановых технических работ и заработает вновь лишь к концу 2014 года. Энергию столкновения протонов в нем планируется увеличить с нынешних 8 ТэВ до максимальных 13-14 ТэВ. Сверхбольшой адронный коллайдер может стать одним из самых крупных и сложных сооружений, которые мы когда-либо строили. Чтобы воплотить в жизнь идею его создания, специалистам придется разработать сверхпроводящие магниты, способные создавать более сильные поля, чем магниты Большого адронного коллайдера. Их мощность должна составлять порядка 20 тесла — вместо 14 тесла в БАК: то есть, магнитная индукция в Сверхбольшом адроном коллайдере будет в два раза выше, чем в солнечных пятнах. Чтобы достичь таких показателей, потребуются новые материалы: например, пластины из ниобия — покрытого оксидной пленкой серебристо-белого металла, который сегодня добывается лишь в Бразилии и Канаде. Ниобиевые магниты сегодня считаются главными претендентами на роль источников магнитной индукции в Сверхбольшом адронном коллайдере, однако они очень дороги. Кроме того, их температура постоянно должна быть ниже -255 °C.


При этом специалисты предупреждают, что гигантский коллайдер будет всего лишь еще одним шагом на пути постижения загадок физики элементарных частиц. Открытие бозона Хиггса подтвердило теорию о том, что некоторые частицы обладают массой из–за того, что взаимодействуют с вездесущим, похожим на патоку или рыхлый снег полем Хиггса. Но почему же масса «частицы Бога» так велика? Одно из объяснений дает теория суперсимметрии, которая говорит о том, что у существующих частиц есть пары, более тяжелые кусочки материи. И все же, эксперименты в БАК до сих по не принесли нам никаких доказательств этой теории. Возможно, как и было предсказано физиками-теоретиками, массы «частиц-близнецов» настолько велики, что их невозможно обнаружить в Большом адронном коллайдере. В таком случае для поиска нам и впрямь необходима гигантская установка. Пока же ученым остается только надеяться, что повышение мощности БАК позволит в ближайшие 10 лет найти подтверждение существования суперсимметрии и понять, что именно потребуется от Сверхбольшого адронного коллайдера.

Майкл Пескин

физик-теоретик Национальной ускорительной лаборатории (США), автор концепции создания Сверхбольшого адронного коллайдера

Планы по строительству сверхбольшой установки — лишь один из элементов концепции эволюции ускорителей частиц в ближайшие 10 лет. В 2015 году мощность Большого адронного коллайдера должна достичь 13 ТэВ, а в 2022-23 годах он войдет в фазу высокой светимости. Кроме того, существует проект Международного линейного коллайдера — электронно-позитронной установки для более тщательного исследования бозона Хиггса и истинных кварков. Ее строительство в Японии как раз обсуждается сейчас. Эксперименты планируется начать в конце 2020-х годов. Сверхбольшой адронный коллайдер — это пока только образ. Очертив его в нашем докладе, мы хотели подтолкнуть других специалистов к созданию научно-исследовательских работ, чтобы в течение ближайшего десятилетия кто-нибудь выдвинул конкретные предложения. Стоимость коллайдера нужно многократно снизить. Для этого необходимо разработать магниты нового поколения. Я ожидаю, что строительство установки начнется в конце 2020-х годов, а первые эксперименты можно будет провести в 2040-х.

Как и БАК, Сверхбольшой адронный коллайдер будет общемировым проектом. Вероятно, для его строительства потребуется более сбалансированный с точки зрения распределения обязательств между регионами подход к финансированию проекта. Важным игроком станет Китай. Россия, надеюсь, тоже окажется больше вовлечена в процесс реализации задачи. Человечеству ведь нужен всего один сверхбольшой коллайдер. Место для строительства установки пока не выбрано. Это зависит от того, какие страны проявят интерес к проекту. ЦЕРН, очевидно, потребуется другой масштабный проект после закрытия БАК, и потому именно ЦЕРН должен стать главной фигурой в том, что касается реализации этого замысла. В США в реализации нашей задумки заинтересована Национальная ускорительная лаборатория им. Энрико Ферми, однако на сегодняшний день американские власти достаточно негативно относятся к перспективе строительства установки стоимостью 10 миллиардов долларв. Но отношение правительства может измениться, если ученым удастся совершить новые открытия в БАК.


Большой адронный коллайдер был построен для поисков бозона Хиггса. После того, как мы его нашли, Стандартную модель физики элементарных частиц можно считать завершенной. Сегодня не существует других частиц, относительно которых мы располагали бы какой-то теорией или предсказанием того, где их найти. Тем не менее в фундаментальной физике есть множество феноменов, которые Стандартная модель не может объяснить. Например, в ней нет частицы темной материи Вселенной. Модель не объясняет, почему кварки и лептоны имеют настолько разную массу, а истинный кварк в 1000 раз тяжелее «верхнего» кварка. Мы знаем, что поле, связанное с бозоном Хиггса, в любой точке Вселенной имеет отличное от нуля значение, и что это и есть причина возрастания масс всех прочих частиц. Но мы не знаем, почему поле Хиггса так странно себя ведет, и Стандартная модель не может дать нам ключ к этой загадке.

Теоретические модели непонятных нам эффектов действия поля опираются на предположение, что в мире существуют частицы в 10 и даже в 30 раз тяжелее W-бозона или истинного кварка. Сегодня существует множество таких моделей, и в каждой ключевую роль играют разные новые частицы. Многие схемы предполагают фундаментальные изменения в структуре пространства-времени, когда на первый план выходят понятия суперсимметрии, суперструн и новых измерений. У меня нет никаких сомнений в том, что есть масса важных и захватывающих открытий, которые мы можем совершить в коллайдере более высокой мощности. В самое ближайшее время мы бросим все силы на поиск новых частиц в Большом адронном коллайдере. Я верю, что открытия, которые он позволит совершить, укажут нам путь вперед.

В отношении 100-километровой установки существует и другая проблема, куда менее серьезная, но не менее принципиальная, чем все остальные: название. Его дословный перевод звучит как «Очень большой адронный коллайдер». После публикации концепции создания устройства BBC предложила своим читателям придумать для него имя получше. В результате среди предложенных названий оказалось немало смехотворных: космическая соковыжималка, большая сосиска и мegahadrosaurousen, больше похожее на название какого-нибудь доисторического ящера с утиным клювом. Однако нашлись и имена, которые отличались поэтичностью: например, кварковый фонтан, светоч темной материи и машина великого «Почему».

donmigel_62: (кот - учёный)

Анонсирован онлайн-курс, рассказывающий об открытии хиггсовского бозона

Программа дистанционного обучения FutureLearn объявила о записи на бесплатный онлайн-курс, посвященный открытию хиггсовского бозона. Курс длительностью 7 недель стартует 10 февраля 2014 года и будет ориентирован на широкую публику. В объявлении указано, что для понимания курса потребуется лишь школьная математика и базовые знания по физике. Вести курс будет Кристос Леонидопулос (Christos Leonidopoulos), физик-экспериментатор, работающий на LHC, и сотрудник Эдинбургского университета, в котором работает и Питер Хиггс.

donmigel_62: (кот - учёный)

Пять самых насущных проблем физики.

Вопросы без ответа, которые, по собственному признанию физиков, лишают их сна.

Журнал Symmetry Magazine (издаваемый двумя американскими физическими лабораториями с государственным финансированием) попросил специалистов по физике элементарных частиц назвать вопросы, на которые они больше всего хотели бы получить ответы. Вот что из этого получилось.
Иллюстрация smokeybacon.

Каким будет конец Вселенной?

Поэт Роберт Фрост однажды поинтересовался, во льду или в пламени погибнет мир, и физики до сих пор не могут ответить на этот вопрос. Стив Уимпенни из Калифорнийского университета в Риверсайде замечает, что разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения. Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение — тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой. Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом». Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»). Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет — достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?


Этот вопрос предложен Ричардом Руисом из Питсбургского университета. За шуточной формой стоит реальная нехватка понимания природы частицы, обнаруженной в прошлом году на Большом адронном коллайдере. Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго. «Это единственный пример "неуниверсальной" силы в Стандартной модели», — подчёркивает г-н Руис. Кроме того, бозон Хиггса — первая элементарная частица с нулевым спином. «Перед нами совершенно новая область физики элементарных частиц, — говорит учёный. — Мы понятия не имеем, какова её природа».

Почему Вселенная сбалансирована таким образом, что жизнь может существовать?

Если бы законы, по которым формировалась наша Вселенная были хоть немного другими, то нас просто не было бы. В этом высказывании есть доля истины. Действительно, галактики, звёзды, планеты, люди возможны только во Вселенной, которая первое время расширялась со строго определённой скоростью. За расширение отвечает центробежное давление тёмной энергии, которое противостоит направленной внутрь силе тяготения, определяемой массой Вселенной, основную долю коей составляет нечто невидимое, названное тёмной материей. Если бы соотношение этих сил было иным (если бы толчок тёмной энергии вскоре после рождения Вселенной оказался чуть более сильным) — пространство расширялось бы слишком быстро, и ни галактики, ни звёзды просто не смогли бы образоваться. Если бы тёмная энергия давила чуть слабее, Вселенная вновь свернулась бы. Так почему же, спрашивает Эрик Рамберг из Национальной ускорительной лаборатории им. Энрико Ферми, они настолько хорошо уравновешены, что возникла та Вселенная, в которой мы живём? «Нам неизвестна фундаментальная причина этого баланса, — подчёркивает специалист. — Нет сомнений, что количество тёмной энергии во Вселенной — наиболее точно настроенный показатель во всей физике».

Откуда берутся астрофизические нейтрино?

Теория предсказывает, что чрезвычайно высокоэнергетические нейтрино порождаются столкновениями быстрых заряженных частиц (космических лучей) с частицами света (фотонами) в космическом микроволновом фоновом излучении, которым пронизана вся Вселенная. Но что приводит этот процесс в движение и как космические лучи ускоряются — неизвестно. Ведущая гипотеза, у которой нет никаких доказательств, состоит в том, что начало космическим лучам даёт вещество, попадающее в голодные сверхмассивные чёрные дыры в центрах галактик. Возможно, получившиеся в результате нейтрино летят настолько быстро, что у каждой крошки столько же энергии, сколько в бейсбольном мяче, хотя в последнем миллиарды миллиардов атомов. «Мы ничего не знаем об их природе, — говорит Абигейл Вирегг из Института космологической физики им. Кавли Чикагского университета, предложившая вопрос. — Вот когда узнаем, тогда и наведём справки об источниках, которые разгоняют эти частицы до чрезвычайно высоких энергий».

Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

Антиматерия — та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики. Отличие только одно — заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали друг друга. Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»? Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии. «Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции между нейтрино и антинейтрино, — говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. — Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

Подготовлено по материалам Scientific American.

http://compulenta.computerra.ru/veshestvo/fizika/10009764/

Profile

donmigel_62: (Default)
donmigel_62

March 2014

S M T W T F S
       1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 1819202122
23242526272829
3031     

Syndicate

RSS Atom

Style Credit

Expand Cut Tags

No cut tags