donmigel_62: (кот - учёный)
2014-03-18 10:27 am

Ученые создали бионические растения

Киберрастения заполнят городские парки и полетят на Марс?

Киберрастения заполнят городские парки?

Ученые создали бионические растения, которые способны контролировать состояние окружающей среды и активно поглощать солнечный свет. В будущем усовершенствованные с помощью нанотехнологий и электроники растения смогут выполнять массу функций, в том числе очищать воздух и вырабатывать электричество.



Ученые из Массачусетского технологического института в статье, опубликованной в Nature Materials, заявляют о безграничных возможностях, которые открывает интеграция электроники и наноматериалов в живые растения. Растения имеют много ценных качеств, например они дают нам пищу и топливо, вырабатывают кислород, а также просто добавляют эстетики окружающей среде, в которой мы живем. Ученые из MIT хотят сделать растения еще более полезными с помощью добавления наноматериалов, которые существенно увеличивают производительность растений и придают им совершенно новые функции, например возможность вести мониторинг загрязнения окружающей среды.




Чтобы продемонстрировать перспективность своей идеи, ученые провели серию экспериментов с широко распространенным растением семейства капустных: Arabidopsis thaliana.

Исследователи внедрили в хлоропласты (органеллы в которых происходит фотосинтез) углеродные нанотрубки, которые повысили способность растений к захвату световой энергии на 30%. Также, с помощью другого типа нанотрубок удалось «научить» растение обнаруживать один из основных загрязнителей воздуха – оксид азота.


Модернизированные с помощью наноматериалов растения приобретают необычные функции

Изначально идея бионических растений выросла из проекта по созданию самовосстанавливающихся солнечных панелей, похожих на растительные клетки. В ходе исследований, ученые попытались усилить функции фотосинтеза хлоропластов, выделенных из растений, чтобы использовать их в солнечных ячейках.

Хлоропласты – это природные машины, которые имеют все необходимое для фотосинтеза. На первом этапе фотосинтеза пигмент хлорофилл поглощает свет, который возбуждает электроны. В свою очередь, электроны проходят через тилакоидные мембраны хлоропластов. Растение использует эту электрическую энергию для обеспечения второго этапа фотосинтеза - производства сахара.

При удалении из растения, хлоропласты сохраняют свою работоспособность на протяжении нескольких часов, после чего они разрушаются из-за повреждения белков светом и кислородом. Чтобы продлить функционирование хлоропластов в пробирке, ученые ввели в них наночастицы оксида церия. Эти частицы являются очень сильными антиоксидантами, которые поглощают активные формы кислорода и других веществ, повреждающих хлоропласты. Наночастицы были помещены в хлоропласты с помощью новой технологии LEEP. Суть данной технологии заключается в упаковке наночастиц в напряженные молекулы полиакриловой кислоты, которая легко проникает через гидрофобную мембрану хлоропластов. Благодаря введению наночастиц оксида церия, количество вредных молекул, разрушающих хлоропласты, резко сократилось.

Используя LEEP, исследователи также встроили в хлоропласты полупроводниковые углеродные нанотрубки, которые резко повысили эффективность использования солнечного света. Обычно хлоропласты утилизируют лишь 10% солнечного света, но благодаря повышенной электропроводимости углеродных нанотрубок, хлоропласты смогли захватить свет на длинах волн, которые ранее им были недоступны, например ультрафиолетовый, зеленый и ближний инфракрасный части спектра.

После опытов в пробирке, ученые обратились к живым растениям. Ученые насытили хлоропласты растения наночастицами и нанотрубками, что это увеличило поток электронов в процессе фотосинтеза на 30%.

Пока ученые еще не обнаружили увеличения количества сахара и других полезных химических веществ в бионических растениях. Тем не менее, добавление углеродных нанотрубок позволило превратить растения в детекторы оксида азота: особое полимерное покрытие нанотрубок взаимодействует с загрязнителем и дает слабую флуоресценцию. Ранее ученые MIT уже разработали на основе нанотрубок различные датчики, реагирующие на опасные загрязнители, такие как перекись водорода, тринитротолуол и нервнопаралитический газ зарин. Таким образом бионические растения могут стать надежным детектором опасных веществ, а «лишние» электроны можно использовать для питания микроэлектроники.

В настоящее время ученые работают над созданием бионических растений, которые можно использовать для мониторинга окружающей среды, в том числе для обнаружения пестицидов, грибковых и бактериальных инфекций. Также ученые пытаются интегрировать в растения другие наноматериалы, такие как графен.

donmigel_62: (кот - учёный)
2014-03-12 10:18 pm

На космической станции скоро появится "металлургическая печь

На космической станции скоро появится "металлургическая печь" - электромагнитный левитатор MSL-EML

Камера установки MSL-EML


Астронавтам, работающим на борту Международной космической станции (МКС) в скором времени придется периодически одевать сварочные защитные очки для того, чтобы предохранить свои глаза от яркого света металла, расплавленного в недрах новой научной установки. Эта научная установка, которая называется Materials Science Laboratory-Electromagnetic Levitator (MSL-EML), будет доставлена на космическую станцию грузовым космическим кораблем Европейского космического агентства (ЕКА) Automated Transfer Vehicle 5 (ATV-5) "Georges Lemaitre", старт которого намечен на июнь этого года. Основной задачей, которая будет решаться при помощи установки MSL-EML, станет изучение процессов плавления металлов и сложных сплавов в условиях нулевой гравитации.


Большинство металлов и сплавов имеют микрокристаллическую структуру, размеры которой зависят от режимов плавления и охлаждения расплава, и от размеров которой напрямую зависят механические свойства материала. В качестве понятного всем примера можно привести процесс закаливания лезвия ножа, когда металл разогревается до температуры свечения красным цветом и затем погружается в воду или специальный раствор. Резкое и быстрое охлаждение изменяет кристаллическую микроструктуру стали, делая ее более твердой и способной сохранять длительное время остроту граней.

Пример кажется достаточно простым, на сами процессы, происходящие при этом, весьма сложны. Но еще более сложные процессы происходят, когда расплавленный металл заливают в литьевую форму. Различия температуры элементов формы, металла и его плотности приводят к возникновению конвекционных потоков из-за которых получившаяся отливка имеет неоднородную структуру. Происходящие в расплавленном металле процессы малоизученны, поэтому до сих пор литье из металла более напоминает некий вид искусства, нежели технологию.

Исследовательский модуль Columbus Laboratory


Литье в невесомости или в условиях микрогравитации является одним из способов избежать неоднородности металла при литье. В отсутствие гравитации не возникает никаких конвекционных потоков, способствующих неравномерному распределению тепла внутри отливки. Кроме этого, при литье в невесомости нет необходимости в использовании традиционных литьевых форм, расплавленный металл может удерживаться и формоваться при помощи магнитных полей. Это, также, полностью исключает загрязнение металла элементами из материала формы.

К сожалению, на Земле очень сложно получить невесомость. Внутри самолета, летящего по параболической траектории, невесомость возникает максимум на 20 секунд времени, чего недостаточно даже для проведения более-менее серьезных исследований. И сейчас единственным местом, где постоянно существует невесомость, является космическая станция.

Установка MSL-EML, вес которой составляет 360 килограмм, была изготовлена компанией Airbus Defence and Space при содействии специалистов ЕКА и Германского космического агентства DLR. Установка будет установлена в отсеке лаборатории Columbus Laboratory и она состоит из высокотемпературной камеры внутри которой в вакууме или в газовой атмосфере будут плавиться образцы металлов или сплавов. Эти образцы будут удерживаться с помощью магнитного поля, а нагрев будет производиться при помощи индукционной катушки. Все, происходящее с образцами, будет фиксироваться при помощи обычной цифровой камеры, высокоскоростной камеры, способной снимать со скоростью 30 тысяч кадров в секунду, а для контроля температуры образца там установлен пирометр.

Установка MSL-EMLВо время использования в камеру установки MSL-EML будет помещен один из 18 образцов материалов, среди которых различные виды алюминия, меди, металлических и никелевых сплавов. Магнитное поле будет удерживать образцы в центре камеры, не допуская их контакта со стенками, а индуктор сможет разогреть эти образцы до температуры в 2 тысячи градусов по шкале Цельсия.

Варьируя условия нагрева и охлаждения, ученые будут определять наборы основных факторов, влияющих на свойства конечного материала. Камеры и датчики будут производить запись всех процессов, происходящих в моменты плавления и охлаждения материала образцов во всех деталях. Все обработанные образцы будут отправлены на Землю для дальнейшего их анализа, который позволит выявить различия и совпадения практических результатов с результатами многочисленных компьютерных моделирований.

Результаты исследований, произведенных при помощи установки MSL-EML, будут иметь чисто практическое применение. На их основе будут разработаны новые технологии высокотемпературной обработки и литья, при помощи которых на Земле можно будет производить большие количества некоторых уникальных металлов и сплавов, крохотные количества которых можно было получить раньше только в космосе.

http://www.gizmag.com/msl-eml-iss/31042/
donmigel_62: (кот - учёный)
2014-03-11 01:08 am

Использование спин-волн вместо электрического тока ускоряет эффективность процессоров

Использование спин-волн вместо электрического тока может значительно ускорить и сделать более эффективными процессоры будущего

Спин-волновой логический элемент


Всем известно, что при интенсивной работе ваш ноутбук, планшетный компьютер или смартфон становятся теплыми, а в некоторых местах и просто горячими. Выделяющееся тепло является побочным продуктом работы микропроцессора и других электронных компонентов, через которые протекает электрический ток, приводящий в действие все устройство, и, фактически, это тепло является впустую потраченной дефицитной энергией, которой в аккумуляторных батареях хранится не так уж и много. Команда исследователей из Школы технических и прикладных наук Калифорнийского университета в Лос-Анджелесе провела ряд исследований нового типа магнитных материалов, называемых мультиферроиками (multiferroics), необычные свойства которых помогут сделать микропроцессоры будущих компьютеров еще более быстрыми и более энергосберегающими, нежели современные микропроцессоры.



В чипах современных электронных устройств электрический ток проходит через транзисторы, которые, по существу, являются крошечными электронными выключателями. Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв между источником питания и нагрузкой. Транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять. То есть структура транзистора имеет электрическое сопротивление, которое обуславливает выделение некоторого количества паразитного тепла. И чем больше транзисторов упаковывается на кристалле чипов, тем большее количество тепла выделяется.

Команда ученых использовала материалы-мультиферроики для реализации технологии уменьшения количества энергии, требующейся для работы логических ключей и других устройств, которые являются основой всех схем чипов, способных производить вычисления. Мультиферроики могут переходить во включенное и в выключенное состояние при помощи управляющего воздействия электрическим потенциалом определенной полярности. А энергия, возникающая в мультиферроиках, перемещается за счет передачи вращения электронов, переноса спина или спин-волн другими словами.

Процесс распространения спин-волны можно рассматривать как процесс распространения волн на поверхности воды, когда все молекулы воды остаются фактически на одном месте, а энергия волны переносится за счет вертикальных перемещений массы воды волны. Это процесс абсолютно противоположен процессу течения электрического тока в проводнике, который по аналогии можно рассматривать как поток воды, текущей внутри трубы.

"Спин-волны открывают совершенно новые способы перемещения информации и реализации логических вычислений. С их помощью достаточно просто можно решить некоторые из задач, которые являются трудными при решении с помощью традиционной полупроводниковой техники. Кроме этого, использование спин-волн отлично вписывается в концепцию относительно новой области - спинтроники, позволяет управлять значением спинового тока на выходе путем изменения ориентации магнитных полей" - рассказывает профессор Канг Л. Ван (Kang L. Wang), директор Западного института наноэлектроники и научный руководитель данного проекта.

Созданные исследователями опытные образцы спин-волновых логических устройств на основе мультиферроиков продемонстрировали снижение количества выделяемого тепла в 1000 раз по сравнению с аналогичными полупроводниковыми элементами. "Чисто электрический контроль магнетизма материала, практически не требующий наличия электрического тока демонстрирует огромный потенциал для создания новых высокоскоростных устройств хранения и обработки данных, которые смогут демонстрировать производительность, сопоставимую с производительностью современных процессоров, работая при этом от единственной батарейки в течение недель или месяцев времени" - рассказывает Педрэм Хэлили, исследователь из Калифорнийского университета, принимавший участие в данных исследованиях.

http://phys.org/news/2014-03-team-power-efficiency-future-processors.html
donmigel_62: (кот - учёный)
2014-03-06 09:42 am

Открыт новый необычный магнитный материал

Открыт новый необычный магнитный материал


Ученые разработали новый магнитный материал, который может полностью преобразить технологии магнитных дисков и энергетику. Материал, который пока даже не имеет названия, обладает способностью сильно менять свои магнитные свойства под воздействием даже небольших изменений температуры. «Никакой другой материал, известный нам, не способен на это. Это поразительный эффект. И мы можем подвергать этот материал обработке», – заявил Айван Шуллер, сотрудник Университета Калифорнии в Сан-Диего.



Он представил результаты своего открытия на заседании Американского физического общества в Денвере.


Этот биметаллический материал является сплавом двух тонких слоев никеля и окиси ванадия.

«Мы можем контролировать магнитные свойства этого сплава, подвергая его легкому нагреву в очень узком диапазоне температур, не прибегая к воздействию магнитного поля. И в принципе того же можно добиться, подводя к сплаву электрический заряд», – заявил профессор Шуллер.



«При низких температурах окись ванадия выступает в качестве изолятора. При высокой температуре это металл. А в промежутке она превращается в это необычное вещество», – говорит он.


Хотя пока еще слишком рано говорить о его практическом применении, профессор Шуллер считает, что наиболее очевидной областью является компьютерная память.



«Проблема с магнитной памятью заключается в ее обратимости – нам нужно, чтобы она была способна сохранять данные и в то же время записывать новые», – поясняет он.



«В настоящее время наиболее совершенные системы используют устройства нагрева, но это лазеры, которые производят огромное количество тепла. А в новом материале достаточно изменить температуру биметаллического слоя всего на 20 кельвинов, как вы получаете пятикратное изменение магнитопроницаемости», – сообщил профессор Шуллер на конференции.


Другая возможная сфера применения – в области энергопередачи. Профессор Шуллер предсказывает создание нового типа трансформатора, который способен справляться с внезапными скачками напряжения, которые происходят во время гроз или перегрузке сетей. Он указывает при этом, что открытия подобного типа часто приводят к появлению совершенно неожиданных технологий. В качестве примера он приводит открытие гигантского магнетосопротивления, которое привело к миниатюризации магнитных дисков в цифровых устройствах и удостоилось Нажать Нобелевской премии 2007 года.



«Без этого открытия тот компьютер, которым мы пользуемся повседневно, просто не смог бы работать», – сказал ученый на конференции.



«Я не утверждаю, что новый материал решит проблему мирового энергического кризиса, однако не сомневаюсь, что он сильно продвинет нас в этом направлении», – добавил он.


Отдел науки, Би-би-си, Джеймс Морган

donmigel_62: (кот - учёный)
2014-02-28 10:08 am

Небольшой дайджест.

TESLA УДЕШЕВИТ БАТАРЕИ


Компания Элона Маска планирует значительно сократить стоимость литий-ионных батарей для электромобилей. Проект Gigafactory, анонсированный Tesla Motors, предусматривает наращивание производства таких аккумуляторов до 500 тыс. единиц к 2020 году, что, по расчетам компании, снизит их стоимость на 30%.
________________________________________________________________________________________________________

ВЕТРЯКИ ПРОТИВ УРАГАНОВ




Ученые из Стэнфорда считают, что прибрежные ветряные электростанции способны рассеивать бури еще на этапе их формирования.

Конечно, в схватке между ветряком и настоящим ураганом выигрывает последний, но ведь ветряки предназначены для получения энергии из ветра, так почему бы не забрать столько энергии, чтобы предотвратить ураган?

Исследователи считают, что ветряные турбины, расположенные на воде определенным образом, могут выполнять функцию «воздушных волнорезов», поглощая и перенаправляя воздушные потоки, не давая им набрать силу.

В Америке, которая регулярно страдает от разрушительных ураганов, нет ни одной функционирующей морской ветряной электростанции, в то время, как в Европе этот вид добычи энергии набирает популярность и количество ветряных турбин, размещенных на воде уже достигло полумиллиона.

По информации gizmodo.com
_________________________________________________________________________________________________________

PEUGEOT ПОДТВЕРДИЛА ЗАПУСК ВОЗДУШНЫХ ГИБРИДОВ В СЕРИЮ


Бензиново-воздушный привод Hybrid Air дебютирует на Peugeot 2008 в 2016 году. После этого он начнет использоваться также на коммерческих автомобилях сегментов В и С марок Peugeot и Citroën. По аналогии с бензиново-электрическим приводом, автомобили, использующие эту систему, смогут работать на одном только сжатом воздухе в течение очень короткого периода времени, затем будет автоматически подключаться бензиновый мотор.

Ранее альянс PSA Peugeot-Citroën заявлял о готовности производить автомобили с Hybrid Air начиная с 2015 года. Одним из достоинств технологии является ее высокая экологичность: небольшой автомобиль размером с Citroen C3 или Peugeot 208 будет выделять в атмосферу всего 69 г углекислого газа на километр.



______________________________________________________________________________________________________

АСФАЛЬТ ИЗ ПИЩЕВЫХ ОТХОДОВ



Американские инженеры придумали необычный способ переработки использованного кулинарного жира.


Похоже, что пищевые отходы становятся полезным сырьем.Многие слышали про биогазовые ректоры, которые вырабатывают тепло из остатков, производимых сыродельнями, а теперь и использованному кулинарному жиру нашлось применение. В то время как рестораны и различные пищевые производства ежедневно сливают из фритюрниц огромное количество загрязненного растительного и животного масла, в университете штата Вашингтон нашли способ превращать его в асфальт.
Как утверждает инженер Хайфан Вэн, стоимость такого материала гораздо ниже, чем у традиционного асфальта – около 200 долларов за тонну. Впрочем, предстоит еще проверить, насколько это покрытие надежно и долговечно, для этого к концу лета планируется построить небольшой отрезок дороги, который и послужит тестовым полигоном. Надо отметить, что это не первое предложение такого рода – в Айове, например, представили метод изготовления дорожного покрытия с использованием отходов спиртового производства, а в Северной Каролине – из навоза.
По информации gizmodo.com


______________________________________________________________________________________________________

donmigel_62: (кот - учёный)
2014-02-28 09:51 am

Губка оказалась лучшим нанотехнологом, чем человек

Губка оказалась лучшим нанотехнологом, чем человек


Эффективность химических процессов или фармацевтических средств нередко зависит от площади их поверхности. В этом смысле пористые структуры с отверстиями от 2 до 50 нм считаются самыми перспективными.

…Их называют мезопорами, чтобы отличить от микропористых и макропористых, с соответственно разными размерами пор. И именно они обещают самые перспективные прорывы в области неструктурированных материалов.

Некоторое время назад Игорь Злотников и Петер Фратцль (Peter Fratzl) из Института коллоидов и поверхностей Общества Макса Планка (Германия) с некоторыми удивлением обнаружили мезопористый материал, созданный не инженерами, но самой эволюцией — видом Monorhaphis chuni из класса шестилучевых (стеклянных) губок.




k1_7.jpg
Рис. 1. Сегмент примерно сантиметровой стеклянной спикулы, используемой молодой Monorhaphis chuni для крепления к океанскому дну. (Здесь и ниже иллюстрации Igor Zlotnikov / MPI of Colloids and Interfaces).

Эти губки живут на дне Индийского и Тихих океанов, формируя на нижней поверхности сантиметровый столбик-спикулу. При его помощи губка прикрепляет себя к океанской тверди. По мере роста существа столбик тоже увеличивается в размерах, достигая иногда трёх метров.

В середине столбика проходит стеклянная «нить», пронизанная порами диаметром около 5 нм. Каждая пора занята яйцеообразной протеиновой молекулой, известной как силикатеин (этот белок участвует в осаждении биогенного кремнезёма). И именно нахождение в центре каждой поры такой молекулы делало размеры пор совершенно одинаковыми, а их структуру — вполне упорядоченной.

Что особенно важно, одинаковые размеры силикатеиновых молекул — гарантия высокой повторяемости размеров пор, причём, как подчёркивают исследователи, более высокой, чем у синтетических мезопористых материалов. Само собой, поскольку размер пор в искусственный структурах колеблется, они не могут формировать упорядоченные повторяющиеся объекты, что плохо сказывается на их качестве.

k2_4.jpg
Рис. 2. Внутренняя структура стеклянной спикулы напоминает картонную упаковку для яиц: в роли яиц — молекулы силикатеина, вокруг которых происходит отложение материала.



«С силикатеином или его аналогами можно будет производить мезопористые материалы со стопроцентно однородными порами и исключительно периодической структурой, — говорит Игорь Злотников. — Это чрезвычайно ценная черта». Сейчас учёные, используя те же методы, намерены изучить структуры опорных стеклянных спикул на масштабах, превышающих 100-микрометровые фрагменты.


Отчёт об исследовании опубликован в журнале Advanced Materials.
http://www.mpg.de/7950046/glass_sponge_mesoporous_glass

donmigel_62: (кот - учёный)
2014-02-23 05:22 pm

Как графен, только из фосфора

Как графен, только из фосфора


Учёные активно изучают возможности получения новых материалов, аналогичных графену, — состоящих из слоя вещества толщиной в один атом. Существенный прогресс в последнее время был продемонстрирован в получении фосфорена — материала, состоящего из одного слоя атомов фосфора.

habrahabr-phosforen-1.pngКристаллическая структура фосфорена (Credit: Han Liu et al.)


В январе этого года были опубликованы работы сразу двух независимых групп, американской и китайской , которым удалось значительно продвинуться в получении фосфорена. Получают фосфорен из так называемого чёрного фосфора — слоистого материала, похожего на графит, из которого получают графен. Чёрный фосфор известен с 1960-х годов, но только в 2013 году начались попытки выделить из него отдельный слой. В работах, о которых идёт речь, чёрный фосфор был очищен до толщины в два — три атомных слоя. Интересно, что, как и при первом получении графена в 2004 году, для снятия лишних слоёв использовалась банальная липкая лента.

habrahabr-phosforen-2.jpg

Внешний вид чёрного фосфора (Credit: Theodore W. Gray )

Получение новых материалов, состоящих из одного слоя атомов различных веществ, стало в последние годы одним из заметных направлений в материаловедении. Учёные даже окрестили этот тренд «постграфеновой эрой».

Графен, представляющий собой один слой атомов углерода, обладает уникальными свойствами, делающими его практически идеальным для использования в электронных устройствах. В частности, графен отличается исключительно высокой подвижностью электронов, то есть хорошо проводит электричество, а также тепло. Проблема заключается в том, что в графене отсутствует так называемая запрещённая зона — интервал энергий, которые электрону иметь запрещено. Наличие такой зоны крайне желательно, поскольку она является основой всей современной полупроводниковой электроники, позволяя создавать такие важнейшие элементы, как диоды и транзисторы.

Именно поэтому активно идут поиски веществ с высокой подвижность электронов, и одновременно с наличием запрещённой зоны. Поскольку высокая электропроводность графена во многом связана с его двумерной, плоской структурой, то и новые материалы ищут среди тех веществ, которые способны образовать двумерную сетку. В июле 2013 года путём численного моделирования удалось обнаружить 92 кандидата в такие материалы, но их экспериментальное получение оказалось связанным с большим количеством сложностей.

Как и графен, фосфорен состоит из шестиугольников, но не является полностью плоским — некоторые атомы находятся чуть выше плоскости, другие — чуть ниже. Это, однако, несильно замедляет электроны по сравнению с графеном. В то же время фосфор обладает запрещённой зоной, позволяющей ему в разных условиях то проводить ток, то нет.

habrahabr-phosforen-3.png
       Ещё одна иллюстрация кристаллической структуры фосфорена (Credit: Likai Li et al.)

Несмотря на то что достичь толщины в один слой, то есть получить чистый фосфорен, пока не удалось, учёные полны оптимизма. Например, было показано, что даже в полученных образцах скорость движения электронов сравнима с другим кандидатом в «постграфены» — дисульфидом молибдена, состоящим из атомов серы и молибдена. При этом наличие в структуре фосфорена атомов только одного вещества — фосфора, — а не двух, делает новый материал более привлекательным с точки зрения простоты изготовления.

Фосфорен не единственный аналог графена, состоящий из одного сорта атомов. Ранее удалось получить одноатомные слои кремния — силицен — и германия — германен. Оба эти материала обладают более высокой электропроводностью, чем фосфорен, но так же, как и графен, не имеют запрещённой зоны. Теоретически, более интересным кандидатом является станен — одноатомный слой олова, обладающий и высокой подвижностью электронов, и запрещённой зоной, но предсказанный только в 2013 год и пока никем не полученный.

Общей проблемой всех обсуждаемых материалов является их нестабильность. На воздухе они начинают активно окисляться и быстро разрушаются. Специальные уловки, которыми удалось стабилизировать силицен в 2012 году, все равно пока не позволяют использовать этот материал в реальных устройствах. Фосфорен должен быть более стабильным, чем его конкуренты, но его производство сложнее: для получения чёрной модификации фосфор высокой чистоты требуется помещать под огромные давления. Процесс дальнейшего снятия слоёв также пока не оптимизирован.

В любом случае сама возможность получения двумерного материала с запрещённой зоной является достаточно привлекательной для продолжения исследований в этой области, а потенциальный коммерческий успех обещает покрыть любые временные затраты.

habrahabr.ru

donmigel_62: (кот - учёный)
2014-02-22 11:09 am

Как изготовить искусственные мышцы из рыболовной лески

Как изготовить искусственные мышцы из рыболовной лески

Синтетические волокна, созданные из перекрученных полиэтиленовой лески и швейной нити, оказались в сто раз сильнее настоящих мышц.

Исследователи из Техасского университета в Далласе (США) представили синтетические мышцы, которые в 100 раз мощнее настоящих мышечных волокон той же длины и массы.

При этом сама технология изготовления оказалась на удивление простой. Для искусственных мышц не понадобилось никаких изощрённых синтетических полимеров: Рэй Бофман (Ray Baughman) и его коллеги просто взяли полимерную нить из тех, которые используют для производства рыболовной лески или синтетических ниток, и скрутили её в спираль. Эта спираль при перемене температуры могла скручиваться и растягиваться. Любопытно, что техпроцесс можно было поменять и так, чтобы эффект был обратным, то есть чтобы нить при остывании скручивалась, а при нагреве растягивалась. Варьируя число нитей в пучке, можно добиваться иных механических характеристик искусственного «мышечного волокна».

Синтетические волокна, сделанные из шести нитей разной толщины: верхнее сложено из ниток толщиной в 2,45 мм, нижнее — из ниток толщиной в 150 мкм. (Фото авторов работы.)

И характеристики эти воистину впечатляют. Во-первых, по сравнению с обычными мышцами, которые могут сокращаться лишь на 20% от своей длины, искусственные способны уменьшаться наполовину. Быстрого утомления такие мышцы, разумеется, тоже не знают. Если объединить вместе сотню элементарных волокон, то такая мышца сможет поднять больше 700 кг. Относительно веса волокна могут развивать мощность в 7,1 л. с. на кг, что соответствует, по словам исследователей, мощности реактивного двигателя.




Двигателем же для них, как уже сказано, служит перепад температуры, обеспечить который можно как угодно — хоть с помощью химической реакции, хоть посредством электричества (да хоть своим дыханием грейте эти волокна). Что же до самих волокон, то учёные особенно напирают на исключительную простоту их изготовления: дескать, любой студент сделает такое во время обычной лабораторной, главное — соблюсти физические условия, при которых вы будете деформировать нить. Гениальность же авторов идеи в том, что им удалось в этой тривиальной полимерной конструкции угадать огромный физический потенциал.

Собственно, простота этих мышц, наверное, мешает вот так сразу оценить всю революционность изобретения. Хотя исследователи, разумеется, продемонстрировали возможное его применение: приспособленные к окну, они закрывали и открывали его в зависимости от окружающей температуры. Кроме того, из волокон удалось создать тканую материю, пористость которой опять же менялась в зависимости от температуры, а отсюда легко представить себе «умную» одежду, которая будет сама проветривать вас в жару и экономить тепло в холод.

Но, конечно, львиная доля фантазий вокруг и около искусственных мышц отдана робототехнике. Понятно, что такие волокна могут стать прямым аналогом человеческих мышц у роботов, с помощью которых те смогут даже менять выражение лица. Синтетические мышцы пригодятся как при поднятии тяжестей, так и при выполнении тонких хирургических манипуляций (если мы представим себе медицинские аппараты будущего).

В прошлом такие волокна пытались делать из углеродных нанотрубок. По словам Рэя Бофмана, который прошёл и через этот этап, эксперименты с нанотрубками были успешными, но, во-первых, такие «наномышцы» очень сложны в изготовлении и чрезвычайно дороги, а во-вторых, они сокращались всего на 10% от своей длины, то есть уступали даже обычным живым мышцам, не говоря уже о только что явленных полимерных волокнах.

У нас же есть пока только один вопрос, который касается эффективности и экономичности: сколько тепла (и, следовательно, электрической или химической энергии) нужно потратить на их механическую работу? Авторы признаются, что, как и вообще все искусственные мышцы, их волокна в этом смысле не отличаются особой эффективностью, однако есть определённые надежды, что в этом случае оптимизировать энергетические затраты получится довольно быстро.

Результаты исследования опубликованы в журнале Science.

Подготовлено по материалам Техасского университета в Далласе.

donmigel_62: (кот - учёный)
2014-02-16 08:50 pm

Инъектор XStat позволяет остановить даже самые серьезные кровотечения

Инъектор XStat позволяет остановить даже самые серьезные кровотечения

xstat

По статистике около 80 смертей на полях битвы происходят по вине неконтролируемого кровотечения. Примерно такой же процент смертей связан с несвоевременно оказанной помощью во время эвакуации раненых солдат в госпиталя. Обычно это происходит из-за глубоких артериальных ран, которые невозможно перетянуть обычными жгутами. Небольшой стартап, компания RevMedX из Орегона (США) разработала альтернативный метод, который позволит справиться с потенциально совместимыми с жизнью травмами.




Экстренная помощь при огнестрельном или другом проникающем ранении на поле боя может оказаться для солдата ужасным испытанием, перенести которое бывает даже сложнее, чем выжить в момент получения самой травмы. И это особенно актуально при разрыве глубоких артерий, расположенных стыках конечностей и туловища, а также вдоль всего туловища.

injectable-sponges-1

Демонстрация эффективности XStat на примере остановки кровотечения бедренной артерии у свиньи

xstat3

Губка XStat плотно заполняет место разрыва артерии и останавливает кровотечение

Как правило, кровотечение в этих областях невозможно контролировать обычными жгутами. Задачей полевого медика в таких случаях становится закрытие раны специальной марлей, обработанной материалом (обычно хитозаном), стимулирующим процесс свертывания крови, а затем оказание сильного давления на рану в надежде на то, что сгусток свернувшейся крови закроет поврежденную артерию. Этот процесс, по словам Джона Стайнбо, бывшего медика отряда специального назначения, настолько болезненный, что сперва у солдата забирают все оружие, чтобы тот в приступе невыносимой агонии не убил врача или себя самого, остановив тем самым нестерпимую боль и мучение. Губки также покрываются специальным поглощающим рентгеновские лучи материалом, поэтому они без проблем могут быть использованы, а затем удалены сразу, как только появится возможность в хирургическом лечении.

xstat1

Инъектор XStat

RevMedX предлагает использование двух шприцов разного размера: один диаметром 30 миллиметров, для глубоких открытых ран, второй — диаметром 12 миллиметров, для оказания помощи при глубоких огнестрельных ранах. После проведенных тестов первых прототипов, Армия США подписала с компанией контракт на сумму в 5 миллионов долларов на дальнейшую разработку.

xstat2

Этой губкой заполняется рана

Попав в рану, губки начинают расширяться и создавать достаточное давление для остановки артериального кровотечения. В большинстве случаев XStat способна прекратить артериальное кровотечение в течение 15 секунд после введения губки в рану.

Изобретение в настоящий момент ждет одобрения Управления по контролю за продуктами и лекарствами. Благодаря поддержке Армии США, которая направила запрос с просьбой более быстрого рассмотрения заявки, решение об одобрении этого средства будет принято в самые кратчайшие сроки.

donmigel_62: (кот - учёный)
2014-02-11 07:14 pm

Продемонстрирован плащ-невидимка для тепла

Продемонстрирован плащ-невидимка для тепла

Новый метод тепловой «маскировки» объектов поможет избежать перегрева аккумуляторов смартфонов и другой носимой электроники.

Сингапурские исследователи во главе с Чэнвэй Цю (Cheng-Wei Qiu) из местного Национального университета создали трёхслойную «мантию-невидимку», изолирующую объекты от внешних источников тепла.

Для этого «мантия» сочетает внешний слой — лист металла с высокой степенью теплопроводности — и внутреннюю теплоизоляцию из экструдированного пенополистирола. Среды, окружавшая маскируемый объект, по теплопроводности находились примерно посередине между внешним металлом и внутренним теплоизолятором.

Тепловая «мантия-невидимка» может быть как цилиндрической, так и сферической. (Здесь и ниже иллюстрации Cheng-Wei Qiu et al.)


Учёные представили формулу, позволяющую рассчитать толщину слоёв для тепловой «маскировки» объекта любого радиуса, и продемонстрировали цилиндрическую «мантию», которая при нагреве одной стороны до 60 °C и охлаждении противоположной до 0 °C для стороннего наблюдателя выглядела совершенно не мешающей распространению тепла. Как если бы никакого маскируемого объекта и самой «мантии» в этом месте вообще не было: съёмки в ИК-диапазоне показали картину эффективной маскировки. При этом как внешний алюминиевый слой, так и пенополистирол практически не подвергались резким температурным колебаниям, изменения же затрагивали лишь внешний слой и только в той мере, что были свойственны среде в целом.

Резкие колебания температуры обходят маскируемую область стороной.

Как использовать подобные конструкции на практике? Думается, они могут быть полезными в мобильных устройствах, где аккумуляторы очень чувствительны к температуре: перегрев угрожает им взрывом, а переохлаждение снижает ёмкость. Если такая защита будет создана (а она может быть не только цилиндрической, но и сферической, а также более сложных форм), батарея телефона останется не потревоженной даже резкими колебаниями температур, что значительно повысит её потребительские качества.

Отчёт об исследовании опубликован в журнале Physical Review Letters.

Подготовлено по материалам Physicsworld.Com.

donmigel_62: (кот - учёный)
2014-02-09 12:08 pm

Ученые научились выращивать "мохнатые" материалы

Ученые научились выращивать "мохнатые" материалы

Поверхность мохнатого материала


Ученые из Национальной лаборатории Аргонна (Argonne National Laboratory) американского Министерства энергетики разработали технологию, при помощи которой можно вырастить материалы, поверхность которых сплошь покрыта густым лесом микроскопических волосинок. Варьируя некоторые параметры процесса выращивания материала, ученые могут добиться различной густоты создаваемого "микролеса", высоты и толщины получаемых ворсинок, которая может находиться в диапазоне от одного до 100 микрометров.



"Мохнатая" поверхность материала выращивается при помощи полимерного материала, подобного эпоксидной смоле, которая смешивается с отвердителем и специальным растворителем-пластификатором. Но чудо прорастания микроскопического леса начинается в тот момент, когда на этот материал подается переменный высокочастотный электрический потенциал с достаточно большим напряжением. Возникающие при этом электростатические силы моментально начинают вытягивать вверх волоски из не успевшего затвердеть полимерного материала.

Поверхность мохнатого материала #2


Варьируя напряжение электрического потенциала, его частоту и форму импульсов, исследователи могут добиться того, что лес из микроволосков будет принимать совершенно различную форму. При одной комбинации волоски получаются тонкими, гибкими и волнистыми, наподобие волокон шерстяных тканей, а при более жестких условиях прорастает лес из более толстых, прямых и прочных волосков.

Следует отметить, что ученые занимаются подобными исследованиями далеко не ради забавы. Ведь "мохнатые" материалы, которые имеют достаточно большую площадь эффективной поверхности, могут использоваться в самых различных областях. Материалы, покрытые лесом жестких ворсинок, демонстрируют превосходные гидрофобные (водоотталкивающие) способности, а материалы, покрытые очень густым лесом из тонких ворсинок, могут выступать в качестве электродов суперконденсаторов и аккумуляторных батарей большой емкости.

donmigel_62: (кот - учёный)
2014-02-06 09:30 am

Разработан недорогой самовосстанавливающийся пластик

Разработан недорогой самовосстанавливающийся пластик (видео)

Простым смешиванием уже имеющихся в открытой продаже компонентов американские химики научились получать материал с довольно необычными способностями.

В Иллинойсском университете (США) на базе широко распространённых компонентов создан новый самовосстанавливающийся эластичный полимерный материал высокой эффективности. В отличие от множества аналогов, новый материал, разработанный группой Цзяньцзюнь Чэна (Jianjun Cheng), не требует катализаторов, функционирует при низкой температуре, а кроме того, способен к многократному самовосстановлению.

Два сложенных вместе куска полимера срастаются вновь при обычной температуре. (Фото Anne Lukeman.)

Как подчёркивают авторы, продукт особенно пригодится для заполнения внутренних трещин в ответственных конструкциях, где сможет предупредить дальнейшее разрушение.



В основе материала — полимочевина, массовый и сравнительно недорогой продукт, используемый в производстве множества пластиков.

По сути, и итоговый пластик весьма близок к уже существующим: исследователи лишь удлиняют молекулярные цепочки в нём, за счёт чего они могут растягиваться значительно сильнее, чем раньше. Кстати, и добавки, обеспечивающие такие качества, тоже производятся, поэтому для получения новинки надо лишь «смешать отдельно продающиеся компоненты». И никакого «использования дорогостоящего оборудования».

При разрезании, просто сложив два куска пластика вместе и оставив их при комнатной температуре на сутки, вы получите соединение той же прочности, что и прежде. Причём если его растянуть до полного разрыва, граница последнего пройдёт в новом месте, а не в точке восстановления. А чуть нагрев кусок пластика — скажем, приложив к нему палец, скорость сращивания можно значительно поднять. Даже одноминутный подогрев такого рода почти полностью восстановит разрез:



Что дальше? Учёные хотят создать на той же основе покрытия и краски, которые могли бы удаляться при небольшом нагреве или просто с течением времени. Это пригодится там, где требуется нанесение временных защитных покрытий.

Отчёт об исследовании опубликован в журнале Nature Communications.

Подготовлено по материалам Иллинойсского университета.
donmigel_62: (кот - учёный)
2014-02-04 03:03 pm

Искусственная кость легче воды и прочнее стали

Искусственная кость легче воды и прочнее стали

Искусственная кость легче воды и прочнее стали

Ученые создали материал, похожий на кость, но более легкий, чем вода и более прочный, чем сталь. Технология наносборки позволила разработать материал, не имеющий аналогов в природе по своим характеристикам. Материал выдерживает давление в 280 мегапаскаль.



Команда Йенса Бауэра из Технологического института Карлсруэ разработала необычный материал: менее плотный, чем вода, но по прочности сравнимый с некоторыми марками стали. До сих пор возможность изготовления таких материалов подвергалась сомнению, но ученые доказали, что современные технологию уже позволяют работать на наноуровне с достаточной точностью. Таким образом, открывается дорога для разработки и производства материалов с уникальными свойствами.


Новый материал легче воды, но по прочности сравним со сталью. В ближайшем будущем подобные материалы сделают нашу жизнь безопаснее и легче, причем в прямом смысле этого слова

Научно-технический прогресс неразрывно связан с разработкой и использованием новых материалов – это доказывает человеческая история со времен каменного века, до нынешней эпохи композитов.


Человечество добилось большого прогресса в создании материалов, которые в природе не встречаются, однако до сих пор не удалось преодолеть ключевую дилемму: любой материал является компромиссом между прочностью и гибкостью. Проще говоря, чем прочнее материал, тем он более хрупкий, а чем гибче – тем меньше нагрузки может выдержать.


Все известные материалы могут быть представлены в одном графике, где каждое деление означает увеличение прочности (ось y) и плотности (ось x) материала в 10 раз

Линия в середине на 1000 кг/м3 является плотностью воды, соответственно все материалы слева легче воды, а те, что справа - тяжелее. Получается, что твердый материал не может быть легче воды, если он не является пористым. Пористые материалы, такие как дерево и кости, обладают сложной структурой и могут удачно сочетать прочность, гибкость и малый вес.

На протяжении многих лет ученые искали гипотетические материалы, которые могли бы заполнить пустые участки на графике плотности. К счастью, современное компьютерное моделирование может подсказать, какая микроструктура материала может обеспечить требуемые характеристики. К тому же, у ученых впервые появились инструменты, с помощью которых можно работать над созданием микроструктур в масштабе толщины человеческого волоса.

Йенс Бауэр и его коллеги попытались создать похожий на кость сверхпрочный материал с помощью новейшей немецкой технологии Nanoscribe, которая использует сочетание лазерной фотолитографии и 3D-печати.

В лаборатории процесс изготовления нового материала происходит следующим образом: каплю фоточувствительного полимера помещают на предметное стекло и включают лазер. Система автоматизированного проектирования с высочайшей точностью наводит лазерный луч на конкретные участки, которые должны стать твердыми. После завершения обработки, неотвердевший полимер вымывают, оставляя твердый каркас со сложными внутренними структурами, спроектированными компьютером.

Однако на этом процесс не заканчивается, так как получившаяся полимерная пористая «кость» недостаточно прочна. Для ее упрочнения на полимер наносится сверхтонкий слой оксида алюминия толщиной 50 нанометров (миллиардная часть метра).

Получившийся материал легче воды, но при этом превосходит по прочности все природные и искусственные материалы, с плотностью меньше 1000 кг/м3. Так, он в состоянии выдерживать нагрузку 280 MПa, то есть сравним по прочности с некоторыми марками стали.

К сожалению, в ближайшие несколько лет мы не получим массу полезных вещей, сделанных из новейших материалов, спроектированных на компьютере и собранных на наноуровне. Проблема в том, что современные лабораторные методы позволяют создавать предметы из таких материалов размером всего в несколько миллиметров.

Тем не менее, быстрый прогресс в области 3D-печати, лазерной технике и создании новых полимеров позволяет надеяться, что через 10-15 лет на рынок выйдут новые уникальные материалы. Они найдут широкое применение повсеместно: от создания обуви и спортинвентаря, до самолетов и космической техники.

donmigel_62: (кот - учёный)
2014-01-24 09:58 am

Рисунки на бумаге лягут в основу инновационной технологии

Рисунки на бумаге лягут в основу инновационной технологии

Иногда для решения проблемы не требуются высокотехнологичные инструменты — достаточно посмотреть на свой письменный стол.

Три студенты из школы Маккормика Северо-западного университета доказали, что простые карандаши и обычная офисная бумага могут использоваться для создания функциональных устройств, способных измерять напряжение и выявлять опасные химические пары.

Результаты работы опубликованы в издании Scientific Reports. Проект стартовал в 2011 году, во время обсуждения проводимости графена, который можно выделить в обычном карандашном грифеле.



«Когда мы проводим карандашом на бумаге линию, графит оставляет на ней многочисленные листы графена», сообщил доцент материаловедения и инжиниринга Цзяцин Юань. „Студенты поинтересовались, нельзя ли как-то использовать этот графен. Так и было положено начало исследованию того, что можно сделать с карандашными линиями“.





Следы простого карандаша на обычной бумаге сформировали графеновую сетьГруппа студентов, включая ведущих авторов Чен Вей Линя и Жи Бо Жао, начала с измерения проводимости карандашного следа на бумаге, а затем использовала следы для создания элементарного электрода. Исследователи выяснили, что закручивание бумаги в одном направлении повышает проводимость грифельных следов за счет сжатия проводящих частиц графена. Закручивание бумаги в другом направлении ослабляет графеновую сеть и сокращает проводимость.

Студенты обратились к следам, оставляемым гнущимся игрушечным карандашом, чья гибкость обусловлена тем, что в грифель подмешивается не глина, а полимер. И вновь проводимость можно было повышать и уменьшать, манипулируя бумагой, однако студенты установили также влияние наличия летучих химических паров, таких как выделения токсичных промышленных растворителей.

При наличии химиката полимер поглощает пары и расширяется, выталкивая графеновую сеть и сокращая ее проводимость. Особенно сокращение проводимости было заметным в присутствии паров, которые с большей готовностью поглощаются полимером.

Такой тип химического датчика, называемый также хемирезистором, является ключевым элементом «электронного носа», используемого для выявления токсичных химических паров. При создании таких хемирезисторов часто используются более дорогие материалы, такие как сети углеродных нанотрубок или металлических наночастиц, которые необходимо рассеивать в полимерную матрицу для формирования сети.



«Наши студенты показали, что добиться этого можно с простым карандашом и обычной бумагой», отметил Юань. „Это пример того, как любопытство приводит к инновационной работе“.


Другие применения технологии на основе карандаша и бумаги могут оказаться менее традиционными.

«Возможно, с их помощью можно будет создавать умные и интерактивные рисунки, способные реагировать на окружающую среду», заключил Юань.

donmigel_62: (кот - учёный)
2014-01-23 10:18 am

Пластиковые кристаллы могут сменить жидкие в наших мониторах

Пластиковые кристаллы могут сменить жидкие в наших мониторах

Специалисты из нидерландского Фонда фундаментальных исследований научились создавать пластиковые кристаллы при помощи нитеподобных частиц. И те вполне могут быть использованы в цветных дисплеях, основанных на электронных чернилах.

Пластиковые кристаллы чем-то похожи на обычные жидкие, то есть они находятся где-то посередине между истинной жидкостью и истинным твёрдым телом. Разница сводится к тому, что в пластиковых кристаллах (ПК) структуры дальнего порядка довольно сильны, а в жидких — наоборот. При этом физически ПК мягки, примерно как воск, поскольку их молекулы, хотя и закреплены в кристаллической решётке, могут вращаться на месте, как это бывает в жидкостях.

Пластиковые кристаллы до приложения электрического поля...

Так вот, учёные, ведомые Альфонсом ван Блаадереном (Alfons van Blaaderen), впервые получили такие материалы на базе коллоидов, частицы которых находятся в размерном диапазоне 1–1 000 нм.

Среди прочего, новое исследование сделало возможным создание пластиков в стеклообразном состоянии: молекулы ПК всё ещё могут вращаться в них на месте, но уже не находятся в упорядоченной кристаллической решётке. И тем мне менее материал в целом ведёт себя как твёрдое тело.


Приложение к такой экзотической фазе внешнего электрического поля помогло учёным превратить её в трёхмерный кристалл, в котором существует строгая внутренняя упорядоченность, образующаяся за счёт того, что электрическое поле прекращает свободное вращение молекул на месте. Неожиданным последствием оказалось и то, что нити, из которых состоит материал, застывают в правильной 3D-решётке. Процесс обратим, и как только поле исчезает, новинка снова становится «пластиковым стеклом».

...И после. (Здесь и выше иллюстрации FOM.)

Подобное переключаемое поведение пластикового стекла не только способно значительно продвинуть теоретическое понимание перехода в стеклообразное состояние и обратно, но и интересно для использования в дисплеях компьютерных мониторов — так же, как это некогда произошло с жидкими кристаллами. Как подчёркивают разработчики, пластиковые кристаллы могут быть использованы для создания цветных экранов на электронных чернилах.

Отчёт об исследовании опубликован в журнале Nature Communications (полный текст).

Подготовлено по материалам Фонда фундаментальных исследований.

donmigel_62: (кот - учёный)
2014-01-18 12:09 pm

Открыт первый трёхмерный аналог графена

Открыт первый трёхмерный аналог графена

Новый класс материалов не только должен быть проще и удобнее в массовом производстве, чем его двумерный «родственник», но и обладает рядом замечательных качеств, которых нет у графена, а потому может оказать решающее влияние на развитие электроники и спинтроники будущего.

Специалисты Национальной лаборатории имени Лоуренса в Беркли (США) обнаружили, что висмутат натрия может существовать в форме «квантовой материи» — трёхмерного топологического дираковского полуметалла (three-dimensional topological Dirac semi-metal, 3DTDS). При этом были получены первые экспериментальные свидетельства наличия трёхмерных дираковских фермионов в толще материала — феномена, сама возможность существования которого была лишь недавно предсказана теоретиками.

Состояние топологического дираковского полуметалла реализовано в критической точке фазового перехода от обычного диэлектрика к топологическом изолятору. (Иллюстрация LBL.)

«3DTDS — это естественный трёхмерный аналог графена, со сходной или даже лучшей подвижностью электронов и их скоростью, — говорит Юйлинь Чэнь (Yulin Chen), на момент открытия работавший в Национальной лаборатории Лоуренса. — Из-за присутствия трёхмерных дираковских фермионов в толще этого материала DTDS также имеет интригующую непредельную линейную магниторезистивность, которая может быть на порядки выше, чем в материалах, что используются сейчас в жёстких дисках. И это говорит о возможности создания более эффективных оптических сенсоров».



Считающиеся сверхперспективными графен и топологические изоляторы — материалы, являющиеся изоляторами в толще, но проводниками на поверхности, — обязаны интересом к ним в первую очередь своими двумерными безмассовыми дираковскими фермионами, по поведению напоминающими частицы, которые разогнаны до околосветовых скоростей, только в несколько сот раз меньше (порядка 1 000 км/с). В графене их эффект максимален, в то время как в топологических изоляторах они позволяют электронам вести себя «по-графеновски» только на поверхности.

«Быстрое развитие графена и топологических изоляторов породило вопросы о том, есть ли у них трёхмерные аналоги и существуют ли другие материалы с необычной топологией электронной структуры, — вспоминает предысторию исследования г-н Чэнь. — Наше открытие отвечает на оба эти вопроса. В висмутате натрия, который мы изучали, проводимость в толще и валентные зоны соприкасаются только в дискретных точках и рассеиваются линейно по всем трём направлениям момента, чтобы образовать в толще трёхмерные дираковские фермионы [аналог двумерных в графене]. Более того, топология электронной структуры 3DTSD [висмутата натрия] тоже уникальна, как и у топологических изоляторов».

При исследовании материала использовались методы фотоэмиссионной спектроскопии с угловым разрешением, при которой рентгеновские лучи, попадая на поверхность изучаемой структуры, вызывают фотоэмиссию электронов под такими углами и с такими кинетическими энергиями, которые могут быть измерены для получения детального электронного спектра.

На первый взгляд практические перспективы новооткрытого класса материалов выглядят ограниченными: висмутат натрия в нормальных условиях малостабилен, то есть устройства на его основе надо будет изолировать от внешних воздействий. Однако учёные уже ведут поиски других материалов (и почти наверняка среди них окажется арсенид кадмия), являющихся трёхмерными топологическими дираковскими полуметаллами, но при этом значительно более стабильных.

Что важно, уже сейчас понятно, что подобные висмутату натрия электронные структуры предлагают заметные преимущества перед графеном. «3DTDS-системы могут быть куда эффективнее графена во многих приложениях именно потому, что они трёхмерные, — поясняет Юйлинь Чэнь. — Кроме того, пока изготовление крупноразмерных графеновых плёнок, с их толщиной в один атом, остаётся проблемой. Устройства с графеновыми возможностями в ряде приложений будет легче сделать из 3DTDS-систем».

Наконец, в 3DTDS-материалах тоже наблюдается дираковская точка, состояние, при котором теория ферми-жидкости Ландау в её привычном виде не работает, зато работают «запрещаемые» ею многочастичные эффекты, связанные именно с взаимодействием электронов.

Установка для проведения фотоэмиссионной спектроскопии с угловым разрешением, при помощи которой были проанализированы необычные свойства висмутата натрия (фото Roy Kaltschmidt).

Множество свойств нового материала, включая гигантский диамагнетизм, квантовую магниторезистивность в толще, уникальную структуру уровней Ландау при воздействии сильных магнитных полей и др., указывает на его огромный потенциал в новых технологиях, касающихся перспективной электроники, равно как и на то, что 3DTDS-материалы будут идеальной платформой для спинтронных устройств.

По словам Юйлинь Чэня, электроны в подобных материалах будут иметь более сильную связь между своими электронными и магнитными параметрами. Их магнитными спинами можно будет манипулировать, прикладывая к ним электрическое поле, что сильно упростит управление состояниями спинтронных устройств, снижая энергозатраты на операции записи и чтения. Очень необычная магниторезистивность висмутата натрия указывает также на огромный потенциал его и его аналогов в области хранения огромных массивов данных на жёстких дисках будущих поколений.

Отчёт об исследовании опубликован в журнале Science, а с его препринтом можно ознакомиться здесь.

Подготовлено по материалам Национальной лаборатории имени Лоуренса в Беркли.

donmigel_62: (кот - учёный)
2014-01-17 02:54 am

Чудо-материал силицен кончает жизнь самоубийством

Чудо-материал силицен кончает жизнь самоубийством


Полупроводниковая промышленность возлагала большие надежды на новый суперматериал силицен (у него много общего с известным «чудо-материалом» графеном). Но ученые из Университета Твенте (Нидерланды), заснявшие образование силицена «в прямом эфире», камня на камнене оставили от этих надежд: силицен оказался самым настоящим самоубийцей.

Новый материала впервые синтезировали в 2010 году. Как и графен, он состоит из однослойной пленки атомов, упорядоченных подобно сотам (только из атомов кремния, а не углерода).


Особые свойства обоих материалов (прочность, гибкость, отличная электропроводимость) и воодушевляли изготовителей полупроводников. Неумолимые потребности миниатюризации компьютерных микросхем говорят о том, что предел уменьшения деталей из кремния всё ближе и ближе.

Силицен же казался еще «круче» графена: полупроводниковая промышленность привыкла к кремнию, а, кроме того, в силицене проще организовать так называемую «запрещенную зону», необходимую для работы транзисторов.

Нидерландские ученые записали на видео процесс образования силицена: они дали испарённым атомам кремния осаждаться на серебряной поверхности – так сразу получилась прелестная одноатомная пленка. Вроде всё хорошо, но с определенного момента на сформировавшийся слой падают новые атомы, и начинается образование кристаллов кремния (кристаллическая структура принципиально отличается от сотовой). Так начинается кристаллизация вещества – необратимый процесс! И новообразованный кремний, так сказать, пожирает силицен.

Дело в том, что кристаллическая структура кремния с энергетической точки зрения более благоприятна, чем сотовая (силицена), и поэтому более стабильна. Ученым не удалось покрыть силиценом всю поверхность серебра (максимум 97%), и, главное, создать многослойную пленку. Иными словами,

как только поверхность практически до конца закрыта силиценом, материал «кончает жизнь самоубийством» и на его месте остается обычный кремний. Даже если поменять тип поверхности, иного результата ожидать не стоит, пишут ученые: воздействие субстрата на образование второго слоя силицена пренебрежимо мало.





Исследование представлено в журнале Applied Physics Letters. http://www.utwente.nl/en/newsevents/2014/1/38044/wonder-material-silicene-has-suicidal-tendencies

nauka21vek.ru

donmigel_62: (кот - учёный)
2013-12-29 12:51 pm

Разработана посуда, которая моет себя сама

Разработана посуда, которая моет себя сама

Посуда, которая моет себя сама

Для многих людей процесс мытья посуды – это настоящая каторга. Особенно, если вы только что проводили десятерых гостей, а на кухне вас ждёт целая гора тарелок, бокалов и прочих столовых приборов. Первая посудомоечная машина была изобретена более 100 лет назад, но по сей день не каждая семья может себе позволить купить её по разным причинам. На помощь этим людям придёт посуда, которую разработали учёные из Швеции.


Шведская студия дизайна Tomorrow Machine совместно с исследователями из компании Innventia разработала столовые приборы, целиком сделанные из древесной целлюлозы с нанесённым на неё супергидрофобным покрытием. Другими словами, тарелки эти устроены так, что их поверхность на молекулярном уровне отталкивает любые жидкости и другие вещества, заставляя их собираться в лужицы и скатываться с тарелки при наклоне. Еда больше не прилипнет и не присохнет к вашей тарелке, а для того, чтобы её вымыть – просто поднесите её к раковине и наклоните. Остатки еды и любые жидкости просто скатятся с неё вниз.

Посуда эта настолько скользкая, что её даже не нужно протирать после того, как вы избавились от остатков еды. Разработчики утверждают, что широкое распространение и использование такой посуды может привести к серьёзному уменьшению расхода мировых запасов воды. Если задуматься, в их словах есть доля истины, так как люди действительно тратят очень много воды на мытьё посуды.

Посуда, которая моет себя сама

Гидрофобное покрытие – это не самая удивительная часть разработки шведских учёных. Материал, из которого изготовлены тарелки, вызывает не меньший интерес. Специалисты компании Innventia создают эту посуду из плоских листов древесной целлюлозы, которые принимают необходимую форму под горячим прессом, после чего твердеют. Тарелки по ощущениям напоминают керамические, но при этом не бьются и остаются чрезвычайно лёгкими.

Единственным препятствием для выхода изобретения на рынок является получение окончательных результатов исследований того, как гидрофобное покрытие влияет на еду. Как только учёные закончат все необходимые тесты и многочисленные проверки – любой желающий сможет приобрести такую посуду в магазине. А пока придётся мыть посуду по старинке.

По материалам tomorrowmachine.se

donmigel_62: (кот - учёный)
2013-11-27 08:27 pm

Станен - новый материал одноатомной толщины

Станен - новый материал одноатомной толщины, который может потеснить графен в области электроники

Структура станена


Вполне вероятно, что графену придется немного подвинуться с первого места пьедестала почета, которое он занимает в качестве самого перспективного материала для создания электронных устройств и микропроцессоров следующих поколений. А сместить оттуда графен сможет новый материал, станен (Stanene), который также является материалом одноатомной толщины, состоящим из атомов олова и атомов фтора. Согласно расчетам ученых-физиков из Стэндфордского университета и Национальной лаборатории линейных ускорителей SLAC американского Министерства энергетики (US Department of Energy, DOE), этот материал может стать первым в мире материалом, проводящим электрический ток со 100-процентной эффективностью, как при комнатной температуре, так и при более высоких температурах, при которых работают кристаллы современных микропроцессоров.



Название станен происходит от латинского названия олова станнум (stannum), объединенного с окончанием -ен, позаимствованным у названия графен. "Если наши расчеты будут подтверждены результатами экспериментов, которые уже проводятся сейчас в нескольких лабораториях во всем мире, то станен станет материалом, использование которого позволит значительно увеличить скорость работы компьютерных процессоров будущих поколений, снизив при этом количество потребляемой и выделяемой ими энергии" - рассказывает Шоукэнг Занг (Shoucheng Zhang), профессор физики из Стэндфордского университета и руководитель объединенной научной группы.

В течение достаточно долгого времени профессор Занг вместе с его коллегами работали над предварительными расчетами электрических и электронных свойств материалов особого вида, известных как топологические изоляторы. Такие материалы способны проводить электрический ток не через всю площадь их сечения, а только по отдельным участкам, чаще всего по краям и по поверхности. Такие необычные электрические свойства топологических изоляторов обуславливаются сложными взаимодействиями электронов материала и ядер атомов тяжелых элементов. Но если топологический изолятор становится толщиной в один атом, весь этот материал превращается в поверхность, проводящую электрический ток без всяких потерь, со 100-процентной эффективностью.

Вычисления, проделанные группой профессора Занга, показали, что материал, состоящий из одного слоя атомов олова, будет топологическим изолятором, и, как следствие этого высокотемпературным сверхпроводником, "работающим" при комнатной температуре. А добавление атомов фтора в состав этого материала позволило стабилизировать его уникальные свойства и при более высоких температурах, по крайней мере, до 100 градусов по шкале Цельсия. Этот диапазон вполне соответствует температурному диапазону, при котором работают кристаллы большинства микропроцессоров и других электронных чипов.

Для нового материала, станена, ученые видят самую главную область его применения - использование его в качестве материала электрических проводников, которые соединяют в единое целое отдельные элементы и функциональные узлы микропроцессоров. Использование станена в этой роли позволит электронам перемещаться, не встречая сопротивления на своем пути, что приведет к снижению потерь в виде выделяющейся тепловой энергии. "Кроме этого, уникальные свойства станена можно использовать для создания более мелких "кирпичиков", из которых состоят все компьютерные чипы, - транзисторов. Но к этому мы придем лишь после того, как досконально изучим все свойства этого материала и найдем решение некоторых технологических проблем" - рассказывает профессор Занг.

Проблемы технологического плана, о которых упоминает профессор Занг, заключаются в необходимости обеспечения целостности и сохранности одноатомного материала из относительно легкоплавкого олова во время высокотемпературных процессов при производстве полупроводниковых чипов. Но, будем надеяться, что ученые найдут приемлемое решение вышеописанной проблемы и мир в недалеком будущем увидит новые малопотребляющие и высокопроизводительные микропроцессоры.

[ Home | Post Entry | Log in | Search | Browse Options | Site Map ]