donmigel_62: (кот - учёный)

Получены первые свидетельства влияния земного вещества на превращения нейтрино

Когда нейтрино, рождаемые Солнцем, проходят сквозь нашу планету и вылетают на другой стороне, взаимодействие с электронами земного вещества заставляет их чаще обычного превращаться в одну из трёх разновидностей этой частицы. Похоже, на горизонте замаячило нейтринное исследование глубин Земли, и не только оно.

Нейтрино, как известно, очень трудно зарегистрировать, поэтому полная информация об их поведении часто появляется лишь через много лет работы с крупным детектором. Вот почему публикация обзора данных нейтринного детектора SuperKamiokande, расположенного в Японии, — событие чрезвычайной важности.

SuperKamiokande (размер детектора хорошо виден по лодке на заднем плане) видит больше нейтрино ночью, чем днём. (Фото Kamioka Observatory, ICRR, University of Tokyo.)

Как и предсказывал полвека назад советский физик Б. М. Понтекорво, нейтрино склонны к осцилляции — переходу нейтрино одного типа в нейтрино другого типа, надёжно подтверждённому лишь в последнее время. Именно поэтому долгие годы наблюдений за солнечными нейтрино давали столь малое число регистраций электронного нейтрино, которое не совпадало с расчётами физиков: электронные нейтрино на пути от светила к земным детекторам просто превращались в свои мюонные и тау-аналоги.


Но на этом странности с солнечными нейтрино не заканчиваются. Проанализировав данные, полученные за годы работы SuperKamiokande, исследователи во главе с Эндрю Реншоу (Andrew Renshaw) из Калифорнийского университета в Ирвайне (США) пришли к выводу, что поток электронных нейтрино из этого источника ночью (по японскому времени) был на 3,2% больше, чем в дневное время.

Это наблюдение неплохо укладывается в рамки эффекта Михеева — Смирнова — Вольфенштайна (МСВ), теоретически обоснованного в 1986 году, когда советские физики Станислав Михеев и Алексей Смирнов расширили вывод, сделанный в 1978-м американским теоретиком Линкольном Вольфенштайном. По мнению этих учёных, при движении нейтрино в среде, в которой присутствуют слабо взаимодействующие с ним электроны, у него возникает эффективная масса, зависящая от плотности этих электронов и от поколения нейтрино. При изменении плотности электронов (разные слои Земли) эффективные массы нейтрино разных поколений изменяются по-своему и при некоторых значениях плотности могут совпадать, приводя к резонансному усилению нейтринных превращений. Итак, нейтринная осцилляция прямо зависит от материала, через который проходит поток нейтрино, и в космосе она будет одной, а в планетарной толще — совсем иной.

До сих пор подтвердить эффект МСВ с высокой надёжностью наблюдениями не удавалось, и лишь теперь данные SuperKamiokande позволяют с уверенностью говорить о его регистрации для тех солнечных электронных нейтрино, что проходят через Землю, — ведь именно их детектор регистрирует ночью.

Большое количество электронов, участвующих в слабом взаимодействии и тем самым способных хотя и в очень малой степени, но влиять на нейтрино, заставляли тау- и мюонные его разновидности превращаться в электронные, то есть действовали в направлении, прямо противоположном превращению электронных нейтрино в тау и мюонные, которое происходит с этими частицами в межпланетном пространстве при их движении от Солнца к Земле. Увы, пока статическая значимость эффекта на данном комплексе детекторов равна лишь 2,7σ, что по физическим меркам не так уж много. Правда, в сочетании с измерениями, проведёнными на более слабом оборудовании Нейтринной обсерватории Садбери (Канада), эта значимость повышается до 2,9σ, но и это далеко от тех 5σ, которые требуются физику для того, чтобы уверенно произнести слово «открытие». Всё, что ниже трёх сигм, принято называть скорее «свидетельством». И всё-таки перед нами весомое указание на то, что эффект Михеева — Смирнова — Вольфенштайна существует.

К сожалению, то, что даже 18 лет наблюдений не дали трёх сигм, вполне закономерно: нейтрино известны трудностью их регистрации. И чтобы превратить это открытие в пять сигм, явно потребуются данные других детекторов. Впрочем, теперь, после публикации этих результатов, на такую помощь можно надеяться.

Дело в том, что если эффект реален, то он важен не только в теоретическим смысле, для объяснения суточных колебаний в регистрации электронных солнечных нейтрино. Перед нами, быть может, новый метод глубокого исследования недр Земли. Очевидно, что концентрация электронов прямо связана с тем, какие именно вещества и соединения находятся на пути солнечных нейтрино от одной стороны планеты до другой. Размещая нейтринные детекторы в разных точках планеты, можно сравнивать их данные и тем самым хотя и косвенным образом, но всё же исследовать недра так, как это никогда никому не удавалось.

Асимметрия день/ночь пока видна с надёжностью менее 3 сигм, но ввод в строй HyperKamiokande должне изменить ситуацию. (Иллюстрация A. Renshaw et al.)

Стоит заметить, что Научный совет Японии уже выбрал крупный и эффективный детектор нейтрино — HyperKamiokande — как один из наиболее приоритетных научных проектов на ближайшее будущее. Быть может, вскоре исследования превращений нейтрино, в том числе в земных недрах, выйдут на принципиально новую ступень. HyperKamiokande планируется как группа детекторов, в 25 раз превосходящая SuperKamiokande по размерам, а ведь в последнем 50 000 тонн воды в цилиндрах и более 11 000 фотоумножительных трубок.

«Будет ли он достаточно большим, чтобы сделать измерения плотности [внутренних областей] Земли с интересующей нас чувствительностью? Я в этом не уверен, — говорит Дэвид Уарк (David Wark), физик из Оксфордского университета, не принимавший участия в исследовании. — Но мы обязательно исследуем и эту возможность по мере продвижения проекта HyperKamiokande».

Отчёт об исследовании опубликован в журнале Physical Review Letters., а с его препринтом можно ознакомиться здесь.

Подготовлено по материалам Physicsworld.Com.

donmigel_62: (кот - учёный)

Использование спин-волн вместо электрического тока может значительно ускорить и сделать более эффективными процессоры будущего

Спин-волновой логический элемент


Всем известно, что при интенсивной работе ваш ноутбук, планшетный компьютер или смартфон становятся теплыми, а в некоторых местах и просто горячими. Выделяющееся тепло является побочным продуктом работы микропроцессора и других электронных компонентов, через которые протекает электрический ток, приводящий в действие все устройство, и, фактически, это тепло является впустую потраченной дефицитной энергией, которой в аккумуляторных батареях хранится не так уж и много. Команда исследователей из Школы технических и прикладных наук Калифорнийского университета в Лос-Анджелесе провела ряд исследований нового типа магнитных материалов, называемых мультиферроиками (multiferroics), необычные свойства которых помогут сделать микропроцессоры будущих компьютеров еще более быстрыми и более энергосберегающими, нежели современные микропроцессоры.



В чипах современных электронных устройств электрический ток проходит через транзисторы, которые, по существу, являются крошечными электронными выключателями. Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв между источником питания и нагрузкой. Транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять. То есть структура транзистора имеет электрическое сопротивление, которое обуславливает выделение некоторого количества паразитного тепла. И чем больше транзисторов упаковывается на кристалле чипов, тем большее количество тепла выделяется.

Команда ученых использовала материалы-мультиферроики для реализации технологии уменьшения количества энергии, требующейся для работы логических ключей и других устройств, которые являются основой всех схем чипов, способных производить вычисления. Мультиферроики могут переходить во включенное и в выключенное состояние при помощи управляющего воздействия электрическим потенциалом определенной полярности. А энергия, возникающая в мультиферроиках, перемещается за счет передачи вращения электронов, переноса спина или спин-волн другими словами.

Процесс распространения спин-волны можно рассматривать как процесс распространения волн на поверхности воды, когда все молекулы воды остаются фактически на одном месте, а энергия волны переносится за счет вертикальных перемещений массы воды волны. Это процесс абсолютно противоположен процессу течения электрического тока в проводнике, который по аналогии можно рассматривать как поток воды, текущей внутри трубы.

"Спин-волны открывают совершенно новые способы перемещения информации и реализации логических вычислений. С их помощью достаточно просто можно решить некоторые из задач, которые являются трудными при решении с помощью традиционной полупроводниковой техники. Кроме этого, использование спин-волн отлично вписывается в концепцию относительно новой области - спинтроники, позволяет управлять значением спинового тока на выходе путем изменения ориентации магнитных полей" - рассказывает профессор Канг Л. Ван (Kang L. Wang), директор Западного института наноэлектроники и научный руководитель данного проекта.

Созданные исследователями опытные образцы спин-волновых логических устройств на основе мультиферроиков продемонстрировали снижение количества выделяемого тепла в 1000 раз по сравнению с аналогичными полупроводниковыми элементами. "Чисто электрический контроль магнетизма материала, практически не требующий наличия электрического тока демонстрирует огромный потенциал для создания новых высокоскоростных устройств хранения и обработки данных, которые смогут демонстрировать производительность, сопоставимую с производительностью современных процессоров, работая при этом от единственной батарейки в течение недель или месяцев времени" - рассказывает Педрэм Хэлили, исследователь из Калифорнийского университета, принимавший участие в данных исследованиях.

http://phys.org/news/2014-03-team-power-efficiency-future-processors.html
donmigel_62: (кот - учёный)

Как из химического «супа» появились живые организмы?

Эксперимент, в котором вращение наночастиц привело к их самогруппировке в «живые кристаллы», поможет прояснить загадку появления жизни на Земле.



Наночастица в представлении художника ©DIGIZYME, INC.

Исследователи назвали образовавшиеся кристаллы «живыми», поскольку они фактически начали самостоятельно жить, после того как наночастицы сгруппировались согласно нескольким простым правилам.





 Шэрон Глотцер и ее группа из Мичиганского университета обнаружили в процессе компьютерного эксперимента, что стоит привести отдельные наночастицы в круговое движение ˗ по или против часовой стрелки ˗ как они начинают собираться подобно кирпичикам в своеобразный архитектурный ансамбль.

Свое открытие ученые сделали пытаясь найти новые методы самоорганизации наночастиц ˗ одно из важнейших направлений современной науки. Когда речь идет об объектах размерами в тысячи раз меньше песчинок, обычная техника построения сложных структур перестает действовать.


Поэтому специалисты по нанонаукам пытаются создать порядок из хаоса, примерно как это сделала природа миллиарды лет назад, создав из неорганических веществ основу современной жизни.

Умение составлять сложные структуры из наночастиц откроет не только новые пути в создании революционных материалов и устройств, но и позволит понять, каким образом из химического супа образовались первые живые организмы.

˗ Шэрон Глотцер, профессор Мичиганского университета

Специалисты считают, что в биологии сложные структуры образуются в первую очередь благодаря энергии, постоянно поступающей в систему. Именно это было проделано и с наночастицами.

Недавно другая группа исследователей обнаружила, что если давать наночастицам энергию для поступательного движения, они начинают самостоятельно группироваться. Шэрон Глотцер и ее коллеги сделали следующий шаг и заставили частицы при этом вращаться.

Оказалось, что при этом развивается коллективная динамика, которая приводит к образованию сложных структур.

Результаты группы Шэрон Глотцер опубликованы в виде статьи в онлайн-издании журнала Physical Review Letters.


donmigel_62: (кот - учёный)

Предложен способ практичной квантовой телепортации энергии

Японские физики провели расчёты, которые доказывают, что посредством квантовой телепортации можно передавать энергию на большие расстояния.

Квантовая телепортация, несмотря на название, не подразумевает мгновенного переноса на расстояние, ибо она обязательно требует классического (не сверхсветового) канала связи. Тем не менее квантовое состояние при этом передаётся, и концепция трансляции энергии таким образом появилась отнюдь не сегодня, однако расчёты показывали, что возможность такой передачи должна быстро убывать с дистанцией. Следовательно, если отправка состояний атомов реализована для расстояний свыше 100 км, то с энергией, которую теория Масахиро Хотты (Masahiro Hotta) от 2008 года всё же позволяет телепортировать, так не получалось.

Сжатые вакуумные состояния между Алисой и Бобом позволят наконец-то реализовать квантовую телепортацию энергии на разумные расстояния. (Иллюстрация iStockphoto / agsandrew.)

Впрочем, стоп. Состояния атомов — это прекрасно, но как с их помощью можно передать энергию? Г-н Хотта весьма изобретателен, и в его схеме Алиса (частица А) по классическому каналу связи передаёт Бобу (частице Б) информацию о том, что ему нужно извлечь энергию из вакуума (на которой основан экспериментально подтверждённый эффект Казимира).

Идея Масахиро Хотты заключается в том, что поскольку близлежащие точки в квантовом вакууме являются квантово запутанными, а Алиса и Боб близки друг к другу, то Алиса способна измерить «своё» локальное поле и использовать результаты этих вычислений, чтобы получить информацию о локальном поле Боба. Если затем эта информация будет послана Бобу по классическому каналу связи, он сможет использовать её для разработки стратегии извлечения энергии из своего локального поля. При этом энергия, которую он добудет из вакуума, всегда будет меньше той, которую Алиса потратила на проведение первоначальных измерений. То есть термодинамика остаётся в своём праве, а Алиса может «телепортировать» энергию Бобу в форме данных, которые затем позволят ему извлекать энергию из вакуума.


Однако степень квантовой запутанности между локальными полями Боба и Алисы быстро снижается с ростом дистанции между ними. Боб может восстановить энергию, потраченную Алисой, обратно пропорционально шестой степени расстояния между ними, то есть телепортация энергии на сколько-нибудь значительное расстояние потребует затрат, сопоставимых с общепланетной генерацией электричества за год.

Теперь г-н Хотта и его коллеги по Университету Тохоку (Япония), кажется, нашли обходной путь решения этой проблемы. Они предлагают использовать сжатые вакуумные состояния. Последние идентичны нормальным квантовым состояниям, кроме одной маленькой детали: энергетическая плотность области непосредственно между Алисой и Бобом много выше, чем во всех остальных регионах. В итоге квантовое запутывание там можно поддерживать на значительно большем расстоянии, чем в нормальной ситуации.

Сам собой возникает вопрос: как столь сжатые состояния можно создать в лаборатории для больших дистанций? Авторы считают, что здесь пригодится квантовый эффект Холла, возникающий в тонких пластинах полупроводников (желательно одноатомных, типа фосфорена), на которые воздействуют сильным магнитным полем. Тогда электроны в них текут беспрепятственно в одном направлении вдоль края такого двумерного полупроводникового листа, что позволяет получить канал квантовой корреляции, где имеет место квантовая запутанность; в общем, со сжатым состоянием вакуума вроде бы всё ясно. Г-н Хотта и его сотрудники как раз работают над экспериментальной реализацией этой схемы.

Но учёный подчёркивает, что для нашего биологического вида его опыты будут пионерскими. Ранее в истории Вселенной, когда она подверглась быстрому расширению почти сразу после Большого взрыва (инфляции), должны были возникать сжатые вакуумные состояния, сопровождающиеся квантовой телепортацией, предположительно, значимых количеств энергии.

Иллюстрация Physicsworld.Com.

Может показаться, что работа Масахиро Хотты, хотя и важна для теоретической квантовой механики, не слишком полезна для практической реализации новой электроники. Да, для создания квантовых состояний придётся тратить энергию, а потому пока не очень ясно, насколько практична (и энергозатратна) будет квантовая телепортация энергии в квантовых компьютерах. Но до того как такая телепортация станет явью в эксперименте, судить об этом весьма затруднительно, а потому отметать с порога практический потенциал такого вида передачи энергии сейчас не стоит.

Отчёт об исследовании опубликован в журнале Physical Review A, а его препринт доступен здесь.

Подготовлено по материалам Physicsworld.Com.

donmigel_62: (кот - учёный)
Оригинал взят у [livejournal.com profile] kodusass в Вселенная способна разгонять частицы до таких энергий, которые нам пока недоступны.
Выдающимся результатом 2013 года стала первая регистрация нейтрино сверхвысоких энергий в нейтринном телескопе IceCube . Это огромная, с кубический километр, сеть светочувствительных датчиков, погруженных в толщу антарктического льда и наблюдающих за свечением от широкого ливня, порожденного частицей высокой энергии. Количество света, собранного датчиками, сообщает о выделившейся энергии, а точный момент срабатывания каждого из них позволяет восстановить картину распространения ливня частиц, а значит, и определить направление, с которого пришло нейтрино.
Рис. 5. Обложка журнала Science за 22ноября 2013года сизображением отклика, который оставило нейтрино с энергией 250ТэВ, зарегистрированное детектором IceCubeОбложка журнала Science за 22 ноября 2013 года с изображением отклика, который оставило нейтрино с энергией 250 ТэВ, зарегистрированное детектором IceCube. Изображение с сайта sciencemag.org

Read more... )
donmigel_62: (кот - учёный)

Ученые-физики обнаружили новое семейство элементарных частиц, состоящих из четырех кварков

Данные эксперимента BESIII


Международная команда ученых-физиков, проводящих исследования в области физики высоких энергий и высокоэнергетических элементарных частиц, в апреле месяце 2013 года обнаружила новую электрически заряженную частицу Zc(3900), что стало преддверием открытия целого семейства новых элементарных частиц, состоящих из четырех кварков. После этого, физики, работающие со спектрометром Beijing Spectrometer в рамках эксперимента BESIII, обнаружили в результатах своих экспериментов четкие следы другой экзотической частицы Zc(4020), принадлежащей к вышеупомянутому четырехкварковому семейству, что послужило убедительным доказательством существования целого ряда подобных частиц.



"Как было принято считать ранее, кварки, образующие элементарные частицы, связываются парами или тройками. Новые результаты проведенных нами экспериментов открывают нам двери в новый мир ранее неизвестных частиц, состоящих из четырех кварков" - рассказывает Фредерик Харрис, профессор из Гавайского университета в Маноа и участник научной группы эксперимента BESIII, - "Уникальные образцы данных, собираемые сейчас датчиками эксперимента BESIII, позволяют нам начать массированное проникновение в тайны экзотической материи, частицы которой состоят из четырех и большего числа кварков".

Используя Пекинский позитронно-электронный коллайдер (Beijing Electron Positron Collider, BEPCII), ученые настроили его на такой режим, при котором энергия столкновения электронов и позитронов равна 4260 МэВ, что соответствует массе-энергии частицы Y(4260). В результате регистрации огромного числа столкновений электронов и позитронов были отмечены случаи появления самых различных частиц, известных и неизвестных, которые определялись по характерной последовательности их распада.

Такой метод позволил ученым, работающим в рамках эксперимента BESIII, сначала наблюдать следы частицы Zc(3900), а затем и частицы Zc(4020). Помимо этих частиц, ученые также обнаружили в следах распадов следы электрически нейтральной частицы X(3872), частицы из четырех кварков, существовавшей раньше только в теории и которую ученые не могли "поймать" экспериментальным путем уже в течение 10 лет.

"2013 год был захватывающим годом для ученых, участвующих в эксперименте BESIII" - рассказывает Харрис, - "Используя распад частицы Y(4260), нам удалось обнаружить целую семью частиц, состоящих из четырех кварков. К сожалению, для наблюдаемых нами явлений еще не существует до конца проработанной теоретической базы, а это указывает на то, что мы обнаружили совершенно новые формы материи. Сложившееся положение не просуществует долго, мы уже начали заниматься созданием системы классификации этих таинственных частиц, которая, в конце концов, станет основой, на которой будет выстроена новая теоретическая база".

Эксперимент BESIII является одним из многих экспериментов в области физики высоких энергий и высокоэнергетических элементарных частиц, которые проводятся в настоящее время на Пекинском позитронно-электронном коллайдере. Группа ученых, принимающая участие в этом эксперименте состоит из 350 участников из 50 различных научных учреждений 11 стран.

http://esciencenews.com/articles/2013/11/09/high.energy.physicists.predict.new.family.four.quark.objects

Profile

donmigel_62: (Default)
donmigel_62

March 2014

S M T W T F S
       1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 1819202122
23242526272829
3031     

Syndicate

RSS Atom

Style Credit

Expand Cut Tags

No cut tags