donmigel_62: (кот - учёный)

Предложен способ практичной квантовой телепортации энергии

Японские физики провели расчёты, которые доказывают, что посредством квантовой телепортации можно передавать энергию на большие расстояния.

Квантовая телепортация, несмотря на название, не подразумевает мгновенного переноса на расстояние, ибо она обязательно требует классического (не сверхсветового) канала связи. Тем не менее квантовое состояние при этом передаётся, и концепция трансляции энергии таким образом появилась отнюдь не сегодня, однако расчёты показывали, что возможность такой передачи должна быстро убывать с дистанцией. Следовательно, если отправка состояний атомов реализована для расстояний свыше 100 км, то с энергией, которую теория Масахиро Хотты (Masahiro Hotta) от 2008 года всё же позволяет телепортировать, так не получалось.

Сжатые вакуумные состояния между Алисой и Бобом позволят наконец-то реализовать квантовую телепортацию энергии на разумные расстояния. (Иллюстрация iStockphoto / agsandrew.)

Впрочем, стоп. Состояния атомов — это прекрасно, но как с их помощью можно передать энергию? Г-н Хотта весьма изобретателен, и в его схеме Алиса (частица А) по классическому каналу связи передаёт Бобу (частице Б) информацию о том, что ему нужно извлечь энергию из вакуума (на которой основан экспериментально подтверждённый эффект Казимира).

Идея Масахиро Хотты заключается в том, что поскольку близлежащие точки в квантовом вакууме являются квантово запутанными, а Алиса и Боб близки друг к другу, то Алиса способна измерить «своё» локальное поле и использовать результаты этих вычислений, чтобы получить информацию о локальном поле Боба. Если затем эта информация будет послана Бобу по классическому каналу связи, он сможет использовать её для разработки стратегии извлечения энергии из своего локального поля. При этом энергия, которую он добудет из вакуума, всегда будет меньше той, которую Алиса потратила на проведение первоначальных измерений. То есть термодинамика остаётся в своём праве, а Алиса может «телепортировать» энергию Бобу в форме данных, которые затем позволят ему извлекать энергию из вакуума.


Однако степень квантовой запутанности между локальными полями Боба и Алисы быстро снижается с ростом дистанции между ними. Боб может восстановить энергию, потраченную Алисой, обратно пропорционально шестой степени расстояния между ними, то есть телепортация энергии на сколько-нибудь значительное расстояние потребует затрат, сопоставимых с общепланетной генерацией электричества за год.

Теперь г-н Хотта и его коллеги по Университету Тохоку (Япония), кажется, нашли обходной путь решения этой проблемы. Они предлагают использовать сжатые вакуумные состояния. Последние идентичны нормальным квантовым состояниям, кроме одной маленькой детали: энергетическая плотность области непосредственно между Алисой и Бобом много выше, чем во всех остальных регионах. В итоге квантовое запутывание там можно поддерживать на значительно большем расстоянии, чем в нормальной ситуации.

Сам собой возникает вопрос: как столь сжатые состояния можно создать в лаборатории для больших дистанций? Авторы считают, что здесь пригодится квантовый эффект Холла, возникающий в тонких пластинах полупроводников (желательно одноатомных, типа фосфорена), на которые воздействуют сильным магнитным полем. Тогда электроны в них текут беспрепятственно в одном направлении вдоль края такого двумерного полупроводникового листа, что позволяет получить канал квантовой корреляции, где имеет место квантовая запутанность; в общем, со сжатым состоянием вакуума вроде бы всё ясно. Г-н Хотта и его сотрудники как раз работают над экспериментальной реализацией этой схемы.

Но учёный подчёркивает, что для нашего биологического вида его опыты будут пионерскими. Ранее в истории Вселенной, когда она подверглась быстрому расширению почти сразу после Большого взрыва (инфляции), должны были возникать сжатые вакуумные состояния, сопровождающиеся квантовой телепортацией, предположительно, значимых количеств энергии.

Иллюстрация Physicsworld.Com.

Может показаться, что работа Масахиро Хотты, хотя и важна для теоретической квантовой механики, не слишком полезна для практической реализации новой электроники. Да, для создания квантовых состояний придётся тратить энергию, а потому пока не очень ясно, насколько практична (и энергозатратна) будет квантовая телепортация энергии в квантовых компьютерах. Но до того как такая телепортация станет явью в эксперименте, судить об этом весьма затруднительно, а потому отметать с порога практический потенциал такого вида передачи энергии сейчас не стоит.

Отчёт об исследовании опубликован в журнале Physical Review A, а его препринт доступен здесь.

Подготовлено по материалам Physicsworld.Com.

donmigel_62: (кот - учёный)

Главные ожидаемые события 2014 года в науке по версии РИА Новости

В наступающем году космический зонд впервые «пощупает» ядро кометы, врачи «примерят» пациентам сетчатку из стволовых клеток, ученые воссоздадут мозг крысы, а марсоход Curiosity раскроет тайну климатической катастрофы на Марсе.

«Хаябуса-2» и прибытие «Розетты»

Японское аэрокосмическое агентство JAXA в 2014 году планирует запустить свой второй аппарат для исследования астероида — зонд «Хаябуса-2». Миссия первой «Хаябусы» к астероиду Итокава завершилась лишь частичным успехом — из-за сбоя взятие проб грунта на астероиде прошло не по плану, и в спускаемой капсуле зонда, приземлившегося в июне 2010 года в австралийской пустыне Вумера, были обнаружены лишь микроскопические частицы.


зонд «Хаябуса-2

Зонд «Хаябуса-2» в 2018 году должен прибыть к 920-метровому астероиду 1999 JU3, высадить на него германский «прыгающий» посадочный модуль MASCOT, взять пробы грунта и в 2020 году вернуться на Землю.

Миссия европейского аппарата «Розетта», путешествующего по Солнечной системе с 2004 года, в следующем году достигнет своего «пика»: должна состояться его встреча с кометой Чурюмова-Герасименко. Зонд впервые в истории высадит на ядро кометы рукотворный аппарат — исследовательский модуль «Фила», с помощью которого ученые изучат химический состав.


Космический аппарат «Розетта»



Большая тусовка и марсоход-летописец

В следующем году на Марсе будет шумно: к планете прибудут американский зонд Maven, предназначенный для исследования атмосферы планеты, а также индийский аппарат «Мангальян».


зонд Maven
В результате на марсианской орбите и на ее поверхности соберется самая большая компания работающих космических аппаратов в марсианской истории. Сейчас на орбите работают европейский аппарат «Марс-Экспресс», американские «Марс-Одиссей» и MRO, с прилетом зондов Maven и «Мангальян»
на орбите будет столпотворение — пять орбитальных зондов сразу.

,
индийский аппарат «Мангальян».

На поверхности тем временем по-прежнему будут работать два марсохода — Opportunity и Curiosity. Последнему в следующем году предстоит добраться до горы Маунт-Шарп в центре кратера Гейла. Как пояснил РИА Новости Игорь Митрофанов из Института космических исследований РАН, в ходе этого восхождения Curiosity впервые составит полную геологическую летопись Марса.



«Весь кратер Гейла глубиной 5 километров был заполнен отложениями, но ветровая эрозия все выдула, и сейчас марсоход стоит почти на его первоначальном дне. Центральная область отложений сохранилась — это и есть гора Маунт-Шарп. Поднимаясь по ее склону, марсоход пойдет от прошлого к настоящему, он увидит геологические слои, которые раньше он не видел, и эта летопись по мере продвижения к вершине будет постепенно прочитываться», — сказал ученый.



«Никто такой летописи Марса длиной 4,5 миллиарда лет еще не прочитал. Можно будет многое сказать о климатической катастрофе в марсианской истории», — добавил Митрофанов.


Новые изотопы и элементы

Российские физики при содействии американских коллег в 2014 году начнут эксперимент по синтезу нового тяжелого изотопа 118-го элемента. Впервые этот элемент был синтезирован в Объединенном институте ядерных исследований в подмосковной Дубне еще в 2006 году, но физики намерены синтезировать новый его изотоп, чтобы исследовать свойства, а также подтвердить свое прежнее открытие.


Директор лаборатории ядерных реакций имени Флерова ОИЯИ Сергей Дмитриев сказал РИА Новости, что ученые получат из США калифорний-251 и в апреле начнут эксперимент по синтезу 118-го элемента путем обстрела на циклотроне мишени из калифорния ионами кальция-48.



«Раньше мы синтезировали 118-й с помощью калифорния-249. Супернейтронный изотоп 118-го элемента с атомной массой 296 будет распадаться на уже известные 116-й и 114-й элементы, которые мы знаем», — отметил Дмитриев, добавив, что даст дополнительные аргументы для Международного союза теоретической и прикладной химии (ИЮПАК) в пользу признания нового элемента.


Кроме того, Дмитриев не исключил, что в 2014 году ИЮПАК признает синтез 117-го, 115-го и 113-го элементов таблицы Менделеева, которые также были синтезированы в Дубне.

Новые метлы в действии

В 2014 году начнет приобретать реальные очертания новая конфигурация российской науки, которая претерпела коренные изменения после реформы Российской академии наук. В частности, будущим летом планируется начать первый мониторинг результативности научных организаций по новым критериям, разработанным рабочей группой при Минобрнауки.

Научные институты должны будут продемонстрировать, в частности, высокие показатели по числу публикаций в международных системах научного цитирования, по количеству полученных грантов и контрактов, числу аспирантов, а также упоминаниям в СМИ.

Россия в ЦЕРНе

Россия в 2014 году после нескольких лет переговоров может стать ассоциированным членом Европейской организации ядерных исследований (ЦЕРН). Советские ученые участвуют в работе ЦЕРНа еще с 1950-х годов, однако до сих пор у нашей страны был лишь статус наблюдателя.



К настоящему времени совет ЦЕРНа уже одобрил российскую заявку на вступление в организацию, и сейчас идут переговоры, по итогам которых будет подписано соглашение.

После вступления в ЦЕРН российские представители получат больше прав в организации, российские предприятия смогут получать «церновские» заказы, граждане России смогут становиться штатными сотрудниками организации.

Всеобъемлющий корпус

Национальный корпус русского языка — один из крупнейших проектов российских лингвистов, запущенный в 2004 году, пополнится текстами 14–16 века и превратится в действительно всеобъемлющий исторический срез нашего языка.

Корпусная лингвистика, научное направление, активно развивающееся в последние годы, основана на использовании корпусов — специальным образом подготовленных массивов текстов разных эпох и разного происхождения. С помощью этого инструмента ученые могут искать слова в нужных им формах, исследовать эволюцию синтаксических конструкций, вести лексикографическую работу и проводить многие другие исследования.



«Русский корпус в 2014 году приобретет панхроническое измерение — от 12 до 21 века, в нем будут тексты от древнерусских летописей до интернет-газет», — сказал РИА Новости заместитель директора Института русского языка имени Виноградова Владимир Плунгян.


По его словам, в корпусе сейчас есть лакуна, в нем не хватает текстов 14–16 веков. «Именно в эту эпоху язык испытал наибольшие потрясения, разрушилась древнерусская система, и началось формирование современной русской системы. Памятники есть, это, например, письма Курбского, письма Грозного, множество юридических документов, но их не было в корпусе. Теперь мы будем готовы предъявить непрерывный корпус русского языка», — сказал ученый. Археологи на полях Первой мировой

Российские археологи в следующем году планируют начать большой проект по исследованию совсем недавней исторической эпохи: Первой мировой войны.



«Мы собираемся начать раскопки на месте Гумбинненского сражения, первого сражения Первой мировой, в котором участвовали русские войска. Места сражений 1914 года еще никогда не становились предметом исследований археологов», — сказал РИА Новости директор Института археологии РАН Николай Макаров.


Кроме того, в следующем году раскопки в Новгороде могут вновь принести «урожай» берестяных грамот. В 2013 году не удалось найти ни одной грамоты, поскольку археологи работали в слоях той эпохи, когда они еще не появились. В сезон 2014 года начнутся раскопки в слоях 12–13 века, и, возможно, осенью академик Андрей Зализняк сможет провести традиционную лекцию в МГУ, посвященную новым грамотам.

Первая сетчатка из стволовых клеток

Ученые из японского исследовательского центра RIKEN, возможно, уже летом пересадят человеку сетчатку, выращенную из его стволовых клеток — разрешение на этот эксперимент они уже получили от властей.


Специалисты заберут у пациентов с макулярной дистрофией сетчатки стволовые клетки. Затем в лаборатории вырастят из них ткани сетчатки, после чего трансплантируют их. Как ожидается, в середине 2014 года через этот эксперимент пройдут шесть человек.

Кроме того, планируется провести похожий эксперимент, но уже с так называемыми индуцированными плюрипотентными стволовыми клетками (iPS).

В глубины мозга

Проект по моделированию работы мозга Blue Brain, базирующийся в Швейцарии, в 2014 году, возможно, представит первый свой результат: работающую модель мозга крысы.


В 2005 году ученые впервые смогли создать реалистичную модель нейрона, а к 2011 году им удалось создать модель работы миллиона клеток мозга. В 2014 году участники проекта намерены создать эквивалент мозга крысы, состоящий из 100 миллионов клеток. Между тем «по соседству» с этим проектом развивается сходный по своим задачам Human Brain Project, а также американская BRAIN Initiative, направленная на картирование активности всех нейронов человеческого мозга.

Первый коммерческий графен

Наноматериал графен в 2014 году, возможно, впервые принесет пользу не только ученым, но и коммерческим компаниям. Ранее первооткрыватели графена,  Андрей Гейм и Константин Новоселов, заявляли, что этот материал открывает большие перспективы для электронной техники благодаря своим уникальным свойствам.


Как предсказывает журнал Physics World, в новом году этот материал, возможно, будет использован в сенсорных экранах смартфонов компаниями Apple или Samsung.

Profile

donmigel_62: (Default)
donmigel_62

March 2014

S M T W T F S
       1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 1819202122
23242526272829
3031     

Syndicate

RSS Atom

Style Credit

Expand Cut Tags

No cut tags