
Если инженеры хотят создать что-то наноразмерное — размером с белок, антитела или вирус — имитировать поведение клетки было бы хорошим началом, поскольку они содержат огромное количество информации в крошечном пакете. Но сымитировать крошечную вещь — крайне сложная задача.
Ритмичный пульс
Решением команды ученых стал генератор, состоящий из небольших синтетических молекул ДНК, которые активируются РНК-транскриптами и ферментами.
Когда молекула ДНК активируется другими компонентами, создается биологическая цепь. Эта схема работает в ритмичном пульсе в течение примерно 15 часов, пока ее химические реакции не замедлятся и в конце концов не остановятся.
Затем исследователи решили «разбить» генератор из одной большой системы в экспериментальной пробирке на много небольших генераторов.
Используя подход, разработанный Максимилианом Вайцом и его коллегами из Технического университета Мюнхена и бывшим аспирантом Калтеха Элайзой Франко, ученые смешали водный раствор ДНК, РНК и ферментов, входящих в состав биохимического генератора, с маслом и встряхивали, пока небольшие порции раствора, каждая из которых содержала крошечный генератор, не были изолированы в каплях масла.
«После добавления масла и встряхивания смесь превратилась в крем, который можно назвать эмульсией, похожей на легкий майонез, — рассказал Уинфри ресурсу Futurity.org. — Затем мы взяли этот крем, вылили на стекло и размазали, чтобы посмотреть на пульсации каждой капли под микроскопом».
Если образец крайне мал
Когда активен большой образец раствора, он флуоресцирует в регулярном пульсе. Крупные капли ведут себя так, как и весь раствор: действуют отдельно, но все еще согласованно.
Но поведение мельчайших капель менее последовательно, а их импульсы быстро выходят из фазы крупных капель.
Исследователи ожидали, что различные капли, особенно мелкие, будут вести себя по-разному из-за эффекта, известного как динамика стохастической реакции. Отдельные реакции, составляющие биохимическую схему, могут происходить в разное время в разных частях раствора.
Если образец раствора достаточно велик, эффект усредняется, но если образец очень мал, различия во времени реакции увеличиваются. Чувствительность к размеру капель может быть еще более значительной в зависимости от характера реакций. Как объяснил Уинфри, «если у вас есть две конкурирующих реакции, скажем, x преобразуется в y или x преобразуется в z, каждая протекает с одной и той же скоростью, в конечном итоге в пробирке образуется пополам y и z. Но если у вас в капле всего четыре молекулы, скорее всего, все они преобразуются в y».
Дело в шуме
В своих экспериментах на биохимическом генераторе, Уинфри с коллегами обнаружили, что этот источник шума — динамика стохастической реакции — был относительно небольшим по сравнению с источником шума, который они не предвидели: эффекты разделения.
Другими словами, молекулы, которые были захвачены в каждой капле, не были одинаковыми. Некоторые капли изначально имели больше молекул, некоторые меньше, и соотношение между различными элементами также отличалось.
Таким образом, даже до того, как разное время реакция может создать стохастическую динамику, крошечные популяции молекул начинают с разнородными особенностями. Эти различия увеличиваются по мере того, как протекает биохимическая реакция.
«Чтобы заставить работать искусственные клетки, нужно знать источники шума. Основной мыслью у нас было то, что шум, с которым мы сталкивается, связан со случайностью химических реакций на таких масштабах. Но этот опыт научил нас тому, что стохастическая динамика — это задача следующего уровня. Чтобы на него выйти, нам нужно выяснить, что делать с шумом разделения».
Для Уинфри это весьма захватывающая задача:
«Когда я программирую свой компьютер, я могу думать исключительно в терминах детерминированных процессов. Но когда я пытаюсь программировать на молекулярных масштабах, мне нужно думать в терминах вероятностей и случайных (стохастических процессов)».
Возможно, именно Уинфри станет первым создателем искусственных клеток. Но для начала ему нужно решить проблему случайностей.