donmigel_62: (кот - учёный)

Микробы на электричестве

Изучены бактерии, способные использовать электрическую энергию.



Бактерии Rhodopseudomonas palustri

Несмотря на всю свою кажущуюся простоту, археи и бактерии обладают способностями, которые не снились и лучшим из супергероев. Речь, конечно, не о телепортации и антигравитации, а о возможностях получать энергию из таких источников, которые совершенно недоступны другим организмам: из серы и муравьиной кислоты, и даже... из электричества. Эту суперспособность изучила недавно команда гарвардских биологов во главе с Питером Джиргисом (Peter Girguis).







Объектом исследования стали весьма многогранные бактерии Rhodopseudomonas palustris. С точки зрения биохимии они − настоящие супермены, способные в разных условиях кардинально перестраивать свой метаболизм, переключаясь между разными его типами: фотоавтотрофным (как у растений), фотогетеротрофным и хемоавтотрофным (как у некоторых бактерий), хемогетеротрофным (как у животных).

Стоит сказать, что для всех форм жизни и разных типов метаболизма электроны важны не менее, чем для течения тока: участвуя в окислительно-восстановительных реакциях, они обеспечивают не только превращение веществ, но и выработку энергии клеткой. Исследованный Джиргисом с коллегами штамм R. palustris TIE-1 необычен и в этом. В отличие от подавляющего большинства организмов, он способен получать и отдавать электроны на вещества, находящиеся не только в растворе, но и в твердой фазе. Например, обычное железо.

Поместив бактерии прямо на подключенный электрод, ученые показали, что они могут забирать с него электрон и, передавая его на молекулу углекислого газа, вырабатывать энергию. Дополнительные исследования вывели авторов и на ген, ответственный за 2/3 способностей R. palustris улавливать свободные электроны. Активируясь под действием солнечного света, ген производит белок RuBisCo, который осуществляет захват электронов и их перенос на углекислый газ.

Кстати, ранее уже звучала смелая идея превратить культуру клеток R. palustris в живой аккумулятор, независимый от сетей источник энергии. Джиргис и его соавторы не уверены в эффективности такого подхода, зато предлагают другой вариант использования этих уникальных бактерий, сконструировав из них «живые фабрики» для промышленного синтеза, скажем, фармпрепаратов. Как и положено фабрикам, питаться они будут, в основном, от проводов.


donmigel_62: (кот - учёный)

Почему сложно создать искусственную клетку?


Если инженеры хотят создать что-то наноразмерное — размером с белок, антитела или вирус — имитировать поведение клетки было бы хорошим началом, поскольку они содержат огромное количество информации в крошечном пакете. Но сымитировать крошечную вещь — крайне сложная задача.


«Я привык считать клетки настоящими маленькими роботами. Биология запрограммировала природные клетки, но теперь инженеры начинают задумываться о том, как создать искусственные», — говорит Эрик Уинфри, профессор информатики, вычислений и нейтральных систем, а также биоинженер Калтеха.



«Мы хотим запрограммировать нечто размером с микрон, тоньше человеческого волоса, что сможет взаимодействовать с химической средой, а также выполнять спектр задач, подвластных биологическим вещам, но по нашим инструкциям».


Центральной проблемой биоинженеров на таких масштабах является то, что вещи просто не работают, как положено, хотя схемы вроде бы верные. Небольшие колонии молекул просто не ведут себя так же, как большие колонии таких же молекул.




Ритмичный пульс

Решением команды ученых стал генератор, состоящий из небольших синтетических молекул ДНК, которые активируются РНК-транскриптами и ферментами.

Когда молекула ДНК активируется другими компонентами, создается биологическая цепь. Эта схема работает в ритмичном пульсе в течение примерно 15 часов, пока ее химические реакции не замедлятся и в конце концов не остановятся.

Затем исследователи решили «разбить» генератор из одной большой системы в экспериментальной пробирке на много небольших генераторов.

Используя подход, разработанный Максимилианом Вайцом и его коллегами из Технического университета Мюнхена и бывшим аспирантом Калтеха Элайзой Франко, ученые смешали водный раствор ДНК, РНК и ферментов, входящих в состав биохимического генератора, с маслом и встряхивали, пока небольшие порции раствора, каждая из которых содержала крошечный генератор, не были изолированы в каплях масла.



«После добавления масла и встряхивания смесь превратилась в крем, который можно назвать эмульсией, похожей на легкий майонез, — рассказал Уинфри ресурсу Futurity.org. — Затем мы взяли этот крем, вылили на стекло и размазали, чтобы посмотреть на пульсации каждой капли под микроскопом».


Если образец крайне мал

Когда активен большой образец раствора, он флуоресцирует в регулярном пульсе. Крупные капли ведут себя так, как и весь раствор: действуют отдельно, но все еще согласованно.

Но поведение мельчайших капель менее последовательно, а их импульсы быстро выходят из фазы крупных капель.

Исследователи ожидали, что различные капли, особенно мелкие, будут вести себя по-разному из-за эффекта, известного как динамика стохастической реакции. Отдельные реакции, составляющие биохимическую схему, могут происходить в разное время в разных частях раствора.

Если образец раствора достаточно велик, эффект усредняется, но если образец очень мал, различия во времени реакции увеличиваются. Чувствительность к размеру капель может быть еще более значительной в зависимости от характера реакций. Как объяснил Уинфри, «если у вас есть две конкурирующих реакции, скажем, x преобразуется в y или x преобразуется в z, каждая протекает с одной и той же скоростью, в конечном итоге в пробирке образуется пополам y и z. Но если у вас в капле всего четыре молекулы, скорее всего, все они преобразуются в y».

Дело в шуме

В своих экспериментах на биохимическом генераторе, Уинфри с коллегами обнаружили, что этот источник шума — динамика стохастической реакции — был относительно небольшим по сравнению с источником шума, который они не предвидели: эффекты разделения.

Другими словами, молекулы, которые были захвачены в каждой капле, не были одинаковыми. Некоторые капли изначально имели больше молекул, некоторые меньше, и соотношение между различными элементами также отличалось.

Таким образом, даже до того, как разное время реакция может создать стохастическую динамику, крошечные популяции молекул начинают с разнородными особенностями. Эти различия увеличиваются по мере того, как протекает биохимическая реакция.



«Чтобы заставить работать искусственные клетки, нужно знать источники шума. Основной мыслью у нас было то, что шум, с которым мы сталкивается, связан со случайностью химических реакций на таких масштабах. Но этот опыт научил нас тому, что стохастическая динамика — это задача следующего уровня. Чтобы на него выйти, нам нужно выяснить, что делать с шумом разделения».


Для Уинфри это весьма захватывающая задача:



«Когда я программирую свой компьютер, я могу думать исключительно в терминах детерминированных процессов. Но когда я пытаюсь программировать на молекулярных масштабах, мне нужно думать в терминах вероятностей и случайных (стохастических процессов)».


Возможно, именно Уинфри станет первым создателем искусственных клеток. Но для начала ему нужно решить проблему случайностей.

donmigel_62: (кот - учёный)

Как продлить срок службы кибернетической ткани, в основу которой положены нановолокна

Многие считают, что появление кибернетических организмов – это перспектива отдалённого будущего, тем не менее есть и те, кто полагает, что ввиду последних инновационных разработок, киборги могут появиться намного раньше.

В рамках исследования, результаты которого были представлены в статье последнего выпуска Nano Letters, учёные установили, что наноэлектроника может были более стабильной в условиях, максимально имитирующих условия внутри человеческого организма. Это факт может существенно помочь в создании чрезвычайной маленьких имплантатов.

Charles Lieber и его коллеги отмечают, что наноэлектронные устройства с компонентами нановолокон обладают уникальной способностью «уживаться» с живыми клетками. К тому же они в разы меньше используемых сегодня имплантатов.


Например, кардиостимулятор, который контролирует работу сердца, размером с 50-центовую монету, а альтернативное наноэлектронное устройство в сотни раз меньше.

Лабораторные образцы, состоящие из кремниевых нановолокон, способны обнаружить биомаркеры болезни и даже единичные вирусные клетки.

Команда Lieber интегрировала наноэлектронику с живыми тканями, создав «кибернетические ткани».

Единственный недостаток практического, длительного использования этих устройств заключается в том, что они, как правило, разваливаются в течении нескольких дней или недель после имплантации. В рамках нынешнего исследования, учёные намерены повысить их надёжность.

В частности, было установлено, что покрытие кремниевых нановолокон оболочкой из оксида металла позволит продлить их срок службы до нескольких месяцев. Исследования проводились в условиях, максимально приближенных к условиям внутри человеческого организма.

donmigel_62: (кот - учёный)

Важный шаг на пути к печати живых тканей


Новый метод биопринтинга, разработанный учеными Института биологической инженерии Висса (Wyss Institute for Biologically Inspired Engineering) Гарвардского университета (Harvard University) и Гарвардской школы инженерии и прикладных наук (Harvard School of Engineering and Applied Sciences), позволяет создавать сложные трехмерные тканевые конструкции из нескольких типов клеток с мельчайшими кровеносными сосудами.

Эта работа представляет собой важный шаг к давней цели тканевых инженеров – созданию конструкций из человеческих тканей, достаточно реалистичных, чтобы проверять на них безопасность и эффективность лекарственных препаратов.


Кроме того, разработка этого метода – первый, но важный шаг к созданию полнофункциональных структур, которые хирурги смогут использовать для замены или восстановления поврежденных или больных тканей. С помощью системы компьютеризированного проектирования, основываясь на данных компьютерной томографии, такие трехмерные структуры можно будет создавать простым нажатием кнопки 3D-принтера.

«Это фундаментальный шаг к созданию трехмерных живых тканей», – говорит руководитель исследования Дженнифер Льюис (Jennifer Lewis), PhD. Вместе с ведущим автором Дэвидом Колески (David Kolesky) ее группа опубликовала свои результаты в журнале Advanced Materials.


1_352.jpg

В новом методе 3D печати, разработанном Дженнифер Льюис и ее группой, используются несколько печатающих головок и специальные чернила. (Фото: Wyss Institute and Harvard School of Engineering and Applied Sciences)

Тканевые инженеры уже многие годы пытаются создать васкуляризированные человеческие ткани, достаточно надежные, чтобы служить заменой поврежденным тканям живого организма. Человеческие ткани печатались и раньше, но их образцы имеют толщину не более трети десятицентовой монетки. В конструкциях большей толщины находящиеся в глубине ткани клетки страдают от недостатка питательных веществ и кислорода и лишены возможности удалять оксид углерода и другие токсичные продукты метаболизма. Они задыхаются и умирают.

Природа решает эту проблему, обеспечивая ткани сетью мельчайших тонкостенных кровеносных сосудов, питающих клетки и удаляющих отходы, и Колески и Льюис решили имитировать это ее важнейшее изобретение.

3D-печать прекрасно справляется с созданием тонко детализированных трехмерных структур, как правило, из инертных материалов, таких как пластмассы или металлы. Доктор Льюис и ее группа – пионеры в разработке широкого спектра новых чернил, затвердевающих в материалы с полезными электрическими и механическими свойствами. Такие чернила позволяют 3D-печати перейти от воспроизведения формы к воспроизведению присущей этой форме функции.

2_206.jpg

В человеческом организме сеть мелких кровеносных сосудов питает ткань и удаляет отходы. Дженнифер Льюис и ее коллеги разработали метод печати 3D тканевых конструкций, позволяющий создать единую структуру из нескольких типов клеток, «склеенных» в ткань
внеклеточным матриксом, со встроенной в нее сосудистой сетью. (Фото: Wyss Institute for Biologically Inspired Engineering at Harvard University)

Чтобы напечатать трехмерные тканевые конструкции с заданной структурой, исследователям были нужны функциональные чернила с полезными биологическими свойствами, и они разработали несколько биочернил, содержащих ключевые ингредиенты живых тканей. Одни чернила содержали внеклеточный матрикс – биологический материал, связывающий клетки в ткань. Вторые чернила содержали как внеклеточный матрикс, так и живые клетки. Чтобы создать кровеносные сосуды, исследователи разработали третьи чернила с необычным свойством: они плавятся при охлаждении, а не при нагревании. Напечатав сеть из нитей, расплавив их путем охлаждения материала и удалив образовавшуюся жидкость, они получили сеть полых трубок, имитирующих сосуды.

Чтобы оценить возможности и универсальность своего метода, ученые напечатали трехмерные тканевые конструкции с различной архитектурой. Кульминацией была конструкция со сложной структурой, содержащая кровеносные сосуды и три различных типа клеток. По сложности такая структура приближается к солидным тканям высших организмов.

Более того, введенные в сосудистую сеть человеческие эндотелиальные клетки образовали выстилку кровеносных сосудов. То, чего добились Льюис и ее коллеги – возможности поддерживать жизнь и рост клеток в такой тканевой конструкции, – важный шаг к печати человеческих тканей.



«В идеале, мы хотим, чтобы максимум работы делала сама биология», – комментирует доктор Льюис.




В настоящее время Льюис и ее группа занимаются созданием функциональных 3D тканей, пригодных для скрининга лекарственных препаратов, но, работая с печатными тканевыми конструкциями, ученые уже сейчас могут пролить свет на фундаментальные процессы, протекающие в живых тканях со сложной архитектурой, – на заживление ран, рост кровеносных сосудов, развитие опухолей, взаимодействие стволовых клеток с их нишами.



«Тканевые инженеры давно ждут появления такого метода», – говорит Дон Ингбер (Don Ingber), MD, директор-основатель Института Висса. «Возможность формировать функциональные сосудистые сети в 3D-тканях до их имплантации не только позволяет создавать ткани большей толщины, но и открывает перспективу хирургического подключения этих сетей к естественной васкулатуре, что, обеспечивая немедленную перфузию имплантированной ткани, значительно повысит ее приживление и выживаемость».


Оригинальная статья

3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
http://wyss.harvard.edu/…ving-tissues






donmigel_62: (кот - учёный)

Создана электрохимическая камера, способная "подслушать переговоры" колонии микроорганизмов

Колония микроорганизмов


Исследовательская группа из Колумбийского университета продемонстрировала опытный образец интегрального чипа, изготовленного по стандартной технологии CMOS (complementary metal-oxide-semiconductor). Этот чип является своего рода первой электрохимической камерой, способной зарегистрировать пространственное положение молекулярных и электрохимических сигналов, при помощи которых общаются отдельные особи колонии микроорганизмов, в режиме реального времени. Другими словами функцией этого чипа является "прослушка" разговоров, ведущихся внутри колонии бактерий.



Одно- и многоклеточные микроорганизмы, которые объединяются и существуют в колониях, насчитывающих миллионы и миллиарды особей, используют молекулярные и электрохимические сигналы для координации своих действий. Такие способности превращают всю колонию в своего рода большой примитивный организм, стремящийся к выполнению определенной задачи, в основном, к размножению и выживанию в случае наступления неблагоприятных условий. К сожалению, никакие методы оптической микроскопии не позволяют рассмотреть все тонкости метаболических, сигнальных и биохимических процессов, которые происходят в колонии микроорганизмов.

"Новый чип является одним из захватывающих видов применения CMOS-технологии, которая позволит нам проникнуть в саму суть процессов жизнедеятельности колоний бактерий, что мы сможем использовать в процессах выращивания биопленок различного типа" - рассказывает Кен Шепард (Ken Shepard), профессор электротехники и биоинженерии Колумбийского университета, - "Такие биопленки имеют достаточно обширную область применения в медицине, в производстве лекарственных препаратов, биологического топлива, в контроле экологической обстановки и в деле ликвидации химических загрязнений".

Структура чипа электрохимической камеры


Чип, подобно датчику обычной камеры, способен получать 60-пиксельные изображения, а время получения одного изображения составляет 36 секунд, чего вполне достаточно для мониторинга биохимических процессов. Каждый пиксел электрохимической камеры имеет размер 2.6 микрона (миллионная доля метра) и вместо фотонов света регистрирует суммарную силу электрического заряда всех молекул, участвующих в биохимическом процессе "разговора".

Следующим шагом, который намерены предпринять ученые, станет разработка нового чипа с большей пространственной и временной разрешающей способностью, возможности которого позволят исследовать процессы, происходящие в достаточно больших колониях микроорганизмов. "Это является абсолютно новым направлением использования твердотельной электроники в деле изучения сложных биологических систем" - рассказывает профессор Шепард, - "И это демонстрирует нам потенциал традиционных технологий изготовления интегральных схем для интенсивного продвижения вперед областей биотехнологий и других наук о жизненных формах".

http://www.kurzweilai.net/chips-that-listen-to-bacteria
donmigel_62: (кот - учёный)

Можно ли вернуть зрение с помощью лекарств?

Если обработать ганглионарные клетки сетчатки специальным веществом, их можно научить чувствовать свет, подобно настоящим фоторецепторам.

Фоторецепторы глаза, палочки и колбочки, с возрастом и при некоторых болезных портятся и отмирают, и в большинстве случаев всё, что тут можно сделать, — это по возможности замедлить процесс. Восстановить же зрение вряд ли возможно, потому что рецепторы погибают необратимо.

В последнее время, однако, успехи науки заставляют поверить, что от слепоты, вызванной гибелью клеток сетчатки, всё же можно будет избавиться. Понятно, какие тут могут быть варианты решения: с одной стороны, нейроэлектронные протезы сетчатки (которые уже успешно применяются), а с другой — стволовые клетки, способные превратиться в новые фоторецепторы. Метод на основе стволовых клеток пока только разрабатывается, однако результаты вселяют определённые надежды: такие клетки успешно приживаются у человека и даже позволяют слегка улучшить зрение.

Ганглионарный слой сетчатки: ганглионарные клетки окрашены оранжевым, волокна зрительного нерва — красным, кровеносные сосуды — синим, глиальные клетки — зелёным. (Фото Visuals Unlimited / Corbis.)

Возможен и третий путь: надо лишь заставить другие клетки сетчатки почувствовать свет. Видов клеток в сетчатке много, и собственно фоточувствительные рецепторы составляют лишь часть её. Некоторое время назад Ричард Краймер (Richard H. Kramer) из Калифорнийского университета в Беркли (США) задумался над тем, нельзя ли научить чувствовать свет ганглионарные клетки. Эти клетки через посредников принимают зрительный сигнал от фоторецепторов и передают его непосредственно в мозг, но сами по себе свет не чувствуют.


Два года назад исследователям удалось найти вещество, которое делало ганглионарные клетки сетчатки чувствительными к свету — правда, только к ультрафиолетовому. Но вот в новой статье, опубликованной в Neuron, г-н Краймер и его коллеги сообщают, что сумели настроить ганглионарные клетки на обычный белый свет.

Вводя в глаз невидящим крысам вещество под названием DENAQ, учёные добились, что животные стали реагировать на свет так же, как и зрячие особи. Правда, сами авторы работы оговариваются, что пока не знают, видят ли вылеченные крысы окружающий мир в каких-то подробностях или просто отличают свет от тьмы.

Важно, что это вещество никак не вредило здоровым фоторецепторам сетчатки, то есть в перспективе его можно использовать при частичных повреждениях сетчатки и не бояться побочных эффектов. Впрочем, до клинического применения метода ещё далеко: предстоит выяснить не только то, до какой степени тут возвращается зрение, но и сработает ли такой способ на человеческом глазу.

Подготовлено по материалам NewScientist.

donmigel_62: (кот - учёный)

Насколько мы близки к созданию полноценного киборга? (перевод)



Мечта о создании киборга с полностью искусственным телом, похоже, скоро станет реальностью. С прогрессом в электронике, нанотехнологиях и точной механике мы сможем всё больше и больше интегрировать машины в собственное тело, чтобы повысить свои возможности. Судя по всему, теперь лишь вопрос времени, когда мы научимся пересаживать человеческий мозг внутрь механического тела.

Терминология
К выходу готовится новый документальный фильм «Невероятный Бионический Человек» (The Incredible Bionic Man). Один из героев данной ленты родился без левого предплечья и сейчас носит бионический протез. Формально, по определению, он киборг. Но лишь частично.



В некоем общекультурном понимании, киборг — это существо с полностью механическим телом. Как минимум, внешней механической оболочкой.
Давайте на секунду задумаемся над самими терминами «бионический» и «киборг». В большинстве случаев они взаимозаменяемы, и оба вошли в оборот в 60-х годах. «Бионический» (bionic) произошёл от biology (биологический) и electronic (электронный). «Киборг» (cyborg) состоит из cybernetic (кибернетический) и organism (организм). Оба термина описывают живые организмы, которые усилены или улучшены с помощью технических приспособлений. Во избежание путаницы, в рамках данной статьи я предлагаю остановиться на термине «киборг».



У многих слово «киборг» вызывает образ Робокопа или Дарта Вейдера. Хотя, конечно, это крайние формы кибернетического организма. Авторы этого термина, Манфред Клайнс (Manfred Clynes) и Нэйтан Кляйн (Nathan S. Kline), определяли его как «замена телесных функций человека для соответствия требованиям окружающей среды». Более того, с этой точки зрения авторы считали применение химических веществ не менее важным средством, как и электроника с механикой. Но в таком контексте можно назвать киборгом и Лэнса Армстронга, пожизненно дисквалифицированного за применение допинга. В любом случае, киборг немыслим без использования механических устройств и приспособлений.



Что мы имеем на сегодня?


Современные научно-технические достижения, накопленные за последние 50 лет, в сумме уже позволяют заменить 60-70% функций человеческого тела. В чём же мы больше всего преуспели бы, задайся целью создать киборга с наименьшим количеством органики?

Конечности

Наибольшего успеха учёные и конструкторы достигли в создании искусственных конечностей. Например, бионический протез i-Limb от компании Touch Bionics с помощью датчиков снимает сигналы с мышц, имеющихся на остатке/рудименте конечности, и интерпретирует как то или иное движение, которое пытается сделать человек.



Однако самой прорывной технологией сегодня является искусственная конечность, управляемая мысленно. В Агентстве оборонных технологий (DARPA) разработали механическую руку, которая подключается к мышечным нервам, так что человек может двигать ею, просто представив, что он двигает собственной рукой. Конечно, в домашних условиях такой протез установить не получится, если у вас нет собственной операционной и нейрохирурга.



Это не единственный проект подобного рода, в начале прошлого года публике была представлена искусственная нога, управляемая по тому же принципу, что и рука от DARPA. Со стороны это выглядит совершенно фантастически. За кадром пока остаются особенности эксплуатации и обслуживания подобного протеза, как и его очень высокая стоимость.

Кости

По нынешним меркам, одна из самых простых искусственных замен в организме. Чаще всего искусственные кости, от больших берцовых до позвонков, изготавливают из титана. Однако успехи в 3D-печати теперь позволяют создавать высокоточные пластиковые замены.



Учёные работают над ещё одним способом усиления скелета. Он заключается не в полной замене конкретной кости, а в её армировании с помощью вспененного полиуретана с добавлением титановой пудры и связующих компонентов. Авторы считают, что благодаря своей пористой структуре армирующий имплантат из подобной «титановой пены» будет обрастать костной тканью, тем самым сильно улучшив механическую прочность кости. Трудно сказать, смогут ли довести эту технологию до практического применения, но в целом идея заслуживает внимания.

Органы

Задача искусственного воспроизведения внутренних органов гораздо сложнее по сравнению с теми же конечностями. Дальше всего мы продвинулись в создании искусственного сердца, причём эта технология постоянно улучшается. Судя по всему, скоро станет возможным создание полноценных искусственных почки и глаза.



Некоторого успеха учёные добились на пути к созданию клеток искусственной печени, однако до воспроизведения самого органа ещё далеко. Ведутся работы и по созданию искусственного кишечника. Кроме всего перечисленного, ждут своих исследователей и искусственные мочевой пузырь, селезёнка, лимфатическая система, желчный пузырь… Не говоря уже о самом сложном органе в человеческом теле…



… о мозге

Пожалуй, это сложнейшая задача. Её можно условно разделить на две части: воспроизведение структуры мозга и разработку искусственного интеллекта. Инженеры неустанно пытаются с помощью суперкомпьютеров повторить нейронную сеть нашего «мыслительного» органа. Например, проект IBM SyNAPSE, моделирующий 530 млрд нейронов (человеческий мозг в среднем содержит 86 млрд). Однако скорость работы подобных компьютерных кластеров несопоставимо медленнее. SyNAPSE отстаёт в 1500 раз от настоящего мозга. Программному симулятору Spaun, запущенному на суперкомпьютере в Университете Ватерлоо, понадобилось 2,5 часа для симуляции 1 секунды активности человеческого мозга.

Другим подходом может стать ограничение размера искусственной нейронной сети ради увеличение быстродействия. В качестве примера выступает специализированный компьютер Neurogrid. Он содержит 16 чипов, каждый из которых представляет собой 65 тыс. «нейронов». Потребляет эта малютка всего лишь 5 Вт (IBM Blue Gene/Q Sequoia потребляет 8 МВт). Около 80 настраиваемых параметров позволяют моделировать различные виды нейронов. Для связи между ними используется цифровой сигнал, а для вычислений — аналоговый. По утверждению разработчиков, Neurogrid, эмулирующий работу всего лишь 1 млн нейронов, при простых вычислениях по быстродействию сравним с настоящим мозгом.

Конечно, само по себе воспроизведение нейронной сети ещё не сделает её искусственным мозгом. Нужно научить её «думать». Сложность задачи по созданию искусственного интеллекта сложно переоценить, это один из крупнейших вызовов современной науки. Небольшие подвижки в этом направлении есть, среди широкой общественности наиболее известна Siri в продукции Apple. Однако многие учёные сомневаются в том, что создание искусственного интеллекта, сравнимого с человеческим, в принципе достижимо при современном уровне развития науки и техники.

В сухом остатке


В рамках этой статьи вопрос о создании искусственного мозга имеет лишь умозрительный характер. Ведь существо (машина?) с таким органом уже не может называться киборгом по определению. Поэтому, просуммировав всё вышесказанное, целесообразно упростить задачу. Поставим вопрос так: «Насколько мы близки к созданию киборга с живым мозгом и полностью искусственным телом»? В целом, технологически, в ближайшие 20 лет вряд ли стоит ожидать появления первых «цельномеханических» киборгов.

Существует и иная точка зрения. В соответствии с ней будущие полноценные киборги будут иметь не искусственное тело, а органическое, но выращенное в лабораторных условиях. Причём это тело будет иметь целый ряд улучшений по сравнению с «обычными» людьми. Однако здесь возникает целый ряд вопросов. В первую очередь: как называть таких существ?

Важным аспектом в создании полноценного киборга является наша социальная и этическая неготовность к принятию этого события. Посмотрите, например, как тяжело проникает в общество идея клонирования. Создание людей с механическим телом, а особенно с улучшенным биологическим, многими будет расценено как присвоение человеком божественной роли "создателя". У этого мнения будет немало сторонников, и, возможно, понадобится не одно десятилетие для сглаживания социального и религиозного неприятия.

Сегодня мы находимся в самом начале развития биотехнологий. Сегодня очень трудно предсказать, каким будет (и будет ли) киборг будущего. Вероятнее всего, механическое тело будут делать максимально похожим на настоящее. Так что образ Робокопа так и останется не воплощённой в жизнь кинофантазией.
http://habrahabr.ru/post/208850/
donmigel_62: (кот - учёный)
Археология будущего: *7 институтов, которые опережают время*

© NASA

Археология будущего: 7 институтов, которые опережают время

Первая университетская программа по исследованию будущего появилась в 1975 году, с тех пор изучение грядущего превратилось в новую академическую традицию. Глобальные риски, прикладная футурология, роботы, медиа, критические теории, биодизайн и генетика — T&P выбрали 7 институтов, чьи программы действительно опережают время.

Глобальные риски и возможности

Институт изучения Будущего Человечества

Институт изучения Будущего Человечества — мультидисциплинарный исследовательский институт при Оксфорде. Своей главной целью он ставит решение «величайших вопросов человечества» средствами математики, философии и науки. Институционально-исследовательский центр принадлежит факультету философии и связан с Оксфордской Школой Мартин — и, на первый взгляд, кажется удивительно новаторским для самого знаменитого из традиционных университетов всего мира. Здесь изучают влияние технологий будущего, делая предсказание на 40 или 50 лет вперед, оценивают риски глобальных катастроф, занимаются прикладной эпистемологией и взвешивают все аспекты того обстоятельства, что с помощью технологий и медицины будущего человек станет куда более совершенным.

Ник Бостром

директор Института Будущего Человечества

Мы изучаем вещи, потенциально опасные для выживания разумных существ — есть несколько трендов, которые в будущем могут изменить базовые параметры существования человеческого вида. Также мы оцениваем этические перспективы для изучения этих трендов и решаем мифологические вопросы — например, как в принципе можно подходить к исследованию этих вещей в научном ключе.



Все мы помним старый военный постер, который придумало британское правительство во время Второй мировой войны. Мне кажется, там было написано что-то вроде «сохраняйте спокойствие и продолжайте идти». Андерс Сандберг предложил сделать постер для нашего института, на котором было бы написано «сохраняйте спокойствие и работайте над тем, чтобы снизить экзистенциальные риски». В этом есть серьезный подтекст — что касается работы с угрозой человеческому существованию, паника будет только мешать — к экзистенциальным угрозам нужно относиться серьезно и стараться понять, какие конкретные шаги мы можем предпринять, чтобы снизить эти риски.

Прикладная футурология

Университет Сингулярности

Пять лет назад Университет Сингулярности создал футуролог Рэй Курцвейл, чтобы воспитать специалистов XXI века, которые смогли бы использовать стремительно развивающиеся технологии на благо человечества. В создании университета приняли участие нобелевские лауреаты и корпорации вроде Google. Сегодня учебное заведение поддерживают более 20 компаний и инициатив. Университет Сингулярности принадлежит к исследовательскому кампусу НАСА в Кремниевой долине. Здесь изучают искусственный интеллект, передовую вычислительную технику, биотехнологии и нанотехнологии — а также обращаются к энергетике, экологии, политическому законодательству и этике — всем тем аспектам социальной жизни, которые будут связаны с интеграцией новых технологий в будни человечества. Каждый день здесь придумывают решения для глобальных проблем — например, как накормить население земли в семь миллиардов человек, во сколько обойдется синтез искусственного мяса и каких рисков это будет стоить. Стандартный курс обучения длится 10 недель и стоит 25 000$. За пять лет здесь успело отучиться более 1300 студентов, прошло огромное количество конференций — в том числе и по медицине будущего, 37 конкурсов Глобального Влияния и различные программы в 15 странах.

BGI — Beijing Genome Institute главный институт Китая в области изучения генетики. Институт больше всего напоминает футуристическую научную фабрику и имеет самый большой парк машин по расшифровке генома во всем мире. Главная задача института — по замыслу создателей расшифровать последовательность генома всего живого на нашей планете. В отделе по клонированию здесь производят свиней всех форм и размеров, и понемногу готовятся применять те же технологии и к людям. В исследовательском отделе занимаются, помимо всего прочего, природой интеллекта и пытаются придумать такое лекарство, которое помогало бы успешно сдавать экзамены. Для завершения картины можно сказать, что огромная армия рабочих фабрики — это очень молодые ученые: практически каждый ученый из 3000 человек родился после 1980-го года.

Сингапурский хаб биомедицинской инновации Биополис решил устроить совместную образовательную программу со Стэндфордом, в результате чего получилась междисциалинарная программа в области биодизайна для инженеров, ученых, бизнесменов и финансистов. Главная цель программы — создание и раннее тестирование технологий, необходимых в медицинских целях, а также подготовка инноваций в области здравоохранения для Азии. Участники программы должны вместе найти применение своим базовым научным знаниям в области биодизайна и исследовать их потенциал — например, изучить возможности нанотехнологии, молекулярной биологии и так далее.

Биодизайн — одна из главных тем Стэндфорской инициативы BioX initiative, междисциплинарной программы с участием 500 ученых из разных областей, которые ведут исследования в области химической биологии, биофизики, генетики и протеомики. Первая программа в Стэндфорде стартовала в 2001 году, а в 2010 году была запущена совместная программа с Сингапуром при поддержке сингапурского министерства экономического развития, национального агентства по науке технологии и исследованию и Национального Университета Сингапура. Шесть месяцев программы студенты проводят в Стэндфорде, а еще шесть — в Сингапуре, где учащиеся работают с ключевыми азиатскими установками и пытаются создавать, прототипировать и развивать новейшие биомедицинские технологии.

Самая интересная на свете площадка для тех, кто хочет заниматься роботами и технологиями будущего — Медиалаборатория MIT. Здесь есть отдел, который занимается персональными роботами разного масштаба — от сверхновых в привычных гаджетах и вплоть до гуманоидных. Главная задача многих этих роботов — оказывать долговременную эмоциональную и когнитивную поддержку людям. Самый очаровательный пример — специальный робот для госпитализированных детей, который играет с ними, рассказывает истории и имеет полторы тысячи сенсоров. В лаборатории существует множество отделов с различными видами роботехники и медиа-технологий, и даже отделы, которые занимаются вживлением искусственных воспоминаний в мозг, а также музыкой будущего. Здесь ученые анализируют то, как те или иные музыкальные композиции могут влиять на различные формы восприятия, здоровья, обучения.

Калифорнийский университет Санта Круз устроил исследовательский центр при поддержке НАСА в сентябре 2003 года. В соответствии с заказом НАСА, исследования здесь связаны с информационными технологиями, биотехнологиями, нанотехнологиями, компьютерной наукой, астробиологией и фундаментальной биологией. Исследовательский центр проводит долгосрочные исследования мультидисциплинарных задач НАСА. Здесь, например, проводят исследования биомедицинских технологий для покорения человеком космоса, анализы атмосфер других планет, разработку технологий для спутников и космических кораблей, технологии для поддержания работы в опасных средах, и многое другое.

В исследовательском центре базируется Институт Системного Обучения Systems Teaching Institute (STI) — здесь хотят научить ученых, инженером и преподавателей XXI века. Основная идея НАСА состоит в том, что им нужны ученые и инженеры, которые бы в процессе обучения получали опыт работы — точно так же, как его получают студенты медицинских вузов. Программы создаются в соответствии с реальными задачами НАСА, которыми занимается исследовательский центр — и это помогает студентам одновременно работать над теорией и практикой.

Философия и критическая теория

Global Center of Advanced Studies

Global Center of Advanced Studies появился как реакция на состояние высшего образования в Америке, где большая часть университетских программ превратилась в стандартный набор бизнес-курсов. Взамен этого центр предоставляет базовые знания, которыми должен обладать гражданин свободного и демократического общества — чтобы бороться с бедностью, экологическими кризисами, безработицей и политической нестабильностью. Институт предоставляет широкий обзор тем, включающий критическую философию, изучение медиа, гендерные исследования, теорию литературы, расовые, этнические и культурные исследования, политику, критическую теологию и даже изучение спорта и нейроанализ. Здесь принципиально практикуют дистанционное обучение и воркшопы в резиденциях — сейчас можно послушать курсы о теории после смерти бога , феминизме марксизме и психоанализе, а в самое ближайшее время будут читаться курсы о критической теории и политической экономии.

donmigel_62: (кот - учёный)

Человечество покидает утробу


Getty Images/Fotobank
Getty Images/Fotobank

В мировой науке супер-сенсация: революционный прорыв совершил японский профессор Есинори Кувабара — он создал искусственную матку и сумел вырастить в ней козленка. Теперь уже нет сомнений: дело за гомункулом, которым ученые бредили с XIII века. Мир неумолимо приближается к рубежу, за которым само воспроизводство человека в искусственных условиях станет просто технологией и бизнесом.

У этой козы еще нет имени, более того, формально этого животного даже еще не существует, но тем не менее она уже стала самой настоящей научной сенсацией, а фотографии этой красавицы на прошлой неделе обошли весь мир. Снимки фантастические: профессор Есинори Кувабара из университета Juntendo в Токио склонился над полупрозрачным белым мешком, в котором и покоится коза, опутанная с головы и до копыт гибкими трубочками и проводами. Это первая в мире искусственная матка, в которой, как утверждают японцы, была выращена первая в мире искусственная коза, которая должна вот-вот родиться на свет.


Известие вызвало настоящую бурю в научном мире. Еще бы! 30 лет назад, когда ученые изобрели процедуру экстракорпорального оплодотворения (ЭКО) и провели первые опыты по зачатию «детей из пробирки», мир вдруг с ужасом узнал, что мужчины больше не нужны для продолжения рода. Именно тогда появились фантастические фильмы в стиле «Новых амазонок», предрекавшие скорую и безжалостную победу феминизма во всем мире. Но прогресс не стоит на месте. И теперь выясняется, что для продолжения человеческого рода не нужны и женщины. Строго говоря, для воспроизводства homo sapiens скоро уже будет не нужен сам человек.

Борьба за дни и граммы

Об изобретении искусственной матки ученые серьезно задумались еще полвека назад, когда перед медициной встала задача поддержания жизни недоношенных детей. Вообще, кувезы для недоношенных, появившиеся в роддомах в конце 70-х годов прошлого века, и есть первые модели искусственных маток — эти пластиковые контейнеры, снабженные водяными матрасами, были призваны имитировать условия пребывания плода в амниотической жидкости в теле матери. Для этого в кувезах поддерживается постоянная температура и влажность воздуха (около 60 процентов), также кувезы снабжены системой искусственной вентиляции легких и аппаратами искусственного питания как через кровь, так и через назогастральный зонд.

В 1979 году врачи сделали открытие, что искусственная вентиляция легких далеко не всегда может спасти жизнь новорожденного. Дело в том, что легкие из всех органов развиваются последними, и только на 22–24-й неделе беременности в организме младенцев появляется сурфактант — специальное вещество, противодействующее спадению альвеол в легких (при помощи этих крошечных пузырьков и совершается газообмен, когда кислород воздуха переходит в кровь, а углекислый газ — из крови в воздух). И если нет сурфактанта, то проводить вентиляцию легких не только бессмысленно, но и смертельно опасно. Поэтому для спасения малышей нужно создавать не только специальную газовую среду, но и синтезировать многие вещества, которые плод получает от матери. Так медики научились моделировать в лабораторных условиях многие процессы, происходящие внутри человека, а «порог выживаемости» младенцев был сдвинут с 24 до 20 недель, то есть медики научились выхаживать 500-граммовый плод, по каким-то причинам отторгнутый материнским организмом. И каждый раз, когда этот «порог» удается сдвинуть хотя бы на несколько граммов, это событие равноценно взятию новой горной вершины — такова цена борьбы за жизнь. Кстати, не так давно в Научном центре акушерства, гинекологии и перинатологии имени академика В.И. Кулакова был поставлен новый мировой рекорд: врачи сумели сохранить жизнь недоношенной девочке весом всего в 450 граммов! То есть, чтобы сдвинуть «порог выживаемости» еще на 50 граммов, понадобилось свыше трех десятилетий напряженных научных исследований.

В конце 70-х произошло еще одно знаковое событие: в Лондоне родилась Луиза Джой Браун, прозванная журналистами Super-Baby — это был первый ребенок, зачатый методом ЭКО. Ученые получили возможность моделировать in vitro процессы внутриутробного развития плода как с самого начала возникновения жизни на клеточном уровне, так и в финальных стадиях. Возникла логичная мысль объединить эти два процесса в единое целое и создать некий аппарат для выращивания людей. Правда, тогда это казалось чистой воды фантастикой — в мире не было вещества, способного заменить плаценту. В итоге медики, занявшиеся изучением свойств этой чудо-ткани, открыли стволовые клетки и основали новую науку — стволовую медицину, благодаря которой и стал возможен новый научный прорыв.

Гонка за маткой

Профессор Есинори Кувабара, заведующий кафедрой акушерства и гинекологии университета Juntendo, занялся проблемой создания искусственной матки еще в 1995 году. Тогда он изобрел «мультиматку» — крохотное устройство, всего 2 мм в диаметре, в которое могут поместиться до 20 яйцеклеток подопытных мышей. Все их можно одновременно оплодотворить, и они будут развиваться до того момента, пока не придет черед провести имплантацию зародыша в матку суррогатной матери. Правда, в те годы из-за нарушений температурного режима и кислотности окружающей среды эмбрионы часто гибли, и тогда профессор Кувабара задумался, что неиспользованные яйцеклетки можно не замораживать, а дать возможность им развиваться. Вскоре он разработал новую технологию поддержания жизни зародышей. Профессор Кувабара извлекал матки у коз и помещал их в стерильные пластиковые емкости, заполненные искусственной амниотической жидкостью (околоплодными водами), в которых постоянно поддерживалась температура тела. В эти матки он помещал зародыши животных, подавая в емкости питательный «бульон».




«Мы обеспечиваем зародышам комфортные условия, имитируя естественную среду, в которой они существуют в организме животного,— цитировал слова Есинори Кувабары авторитетный журнал New Scientist.— Все эксперименты с искусственной маткой, проведенные на козах, показали, что аппарат работает более эффективно, чем обычное искусственное оплодотворение ЭКО, и больше половины эмбрионов в нем вырастают здоровыми».



Правда, довести эксперименты до логического завершения — рождения здорового животного — ученым так и не удалось: все зародыши гибли на самых различных стадиях. Тем не менее за годы бесчисленных экспериментов японцы смогли до совершенства отточить приемы поддержания жизни в искусственных матках. Также были изобретены и полимеры, способные заменить натуральные ткани, но пока об этих искусственных материалах японцы предпочитают не распространяться, справедливо опасаясь, что любое неосторожное слово будет тут же услышано конкурентами.

Действительно, сегодня в мире среди биотехнологических лабораторий развернулась настоящая гонка за право создания действующей технологии искусственного выращивания людей. Свои проекты искусственной матки есть и у американцев, и у корейцев, и у европейцев. Самый интересный проект разработали ученые из Центра репродуктивной медицины и искусственного осеменения Корнельского университета, которым удалось вырастить из стволовых клеток, взятых у женщин, некое подобие женского лона. Были проведены и эксперименты по искусственному оплодотворению, и, как заверила журналистов руководитель исследовательской группы доктор Хан-Чин Лиу, эмбрионы успешно прижились к стенкам лабораторных маток. Но вскоре эксперименты были прекращены — по ряду морально-этических соображений. Но факт остается фактом: даже если эксперимент Есинори Кувабары по рождению искусственной козы и завершится неудачей (а такую возможность осторожный профессор Кувабара, как он объяснил на сайте университета, никогда не исключает), то объединенными усилиями ученых мира искусственная матка так или иначе появится, причем в течение ближайших двух-трех лет.

Обидно, правда, что России даже и близко нет в списках участников этой новой биотехнологической революции. Обидно вдвойне — ведь в свое время советские ученые из Института акушерства и гинекологии АМН СССР сделали немало фундаментальных открытий в области антенатальной терапии (то есть лечения плода до его рождения). Можно еще вспомнить и о работах «чудика» Олега Белокурова из Ленинградского института акушерства и гинекологии им. Д.О. Отта, который еще в 1970-е годы пытался запатентовать свою «искусственную женщину» — так назывался прибор, который, как и кувезы в роддомах, при помощи света и нагрева воды имитировал внутриутробную среду, только не для новорожденного, а для некоего питательного «бульона» и оплодотворенной яйцеклетки. Изобретатель в итоге был подвергнут настоящей обструкции. Конечно, у академиков были веские причины — вряд ли эта «женщина» могла бы принести полноценное потомство, но сам факт ее появления был свидетельством бурления исследовательской работы в научных лабораториях страны. Сегодняшняя же российская наука низведена до того состояния, что мы можем только осваивать чужие разработки, да и то не самые передовые. Тем не менее новая биотехнологическая революция неизбежно затронет и Россию, как бы ни хотелось обратного всем поклонникам патриархального уклада, традиционных консервативных «ценностей» и духовных «скреп», которые шельмуют даже идею о возможности суррогатного материнства. Раздаются даже призывы отказывать суррогатным детям в возможности посещать христианские храмы. Но что будет с нашими консерваторами, когда в мире появятся настоящие репликанты — люди, вообще не имеющие биологических матерей?

Готова ли Россия к таким переменам?

kmo_121006_03241_1_t218_225435.jpg
Фотография из лаборатории профессора Кувабары: так выглядит плод искусственной козы в искусственной матке

Недетские вопросы

Безусловно, заверили корреспондента «Огонька» в Научном центре акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, менее всего медики, работающие в области биотехнологий, задумываются о создании нового — «искусственного» — человечества. Пока что на повестке дня стоят более приземленные задачи. Например, новые технологии позволят иметь собственных детей всем женщинам, страдающим дефектом матки или ее недоразвитием.





Новые технологии позволят решить репродуктивные проблемы у многих молодых пар,— говорит профессор Владимир Бахарев.— Частота врожденных наследственных патологий у нас настолько высокая, что именно генетические факторы сегодня занимают второе место среди всех факторов младенческой смертности. Сегодня до 5 процентов новорожденных страдают различными наследственными патологиями, и поэтому мы настаиваем на том, чтобы молодые пары перед зачатием ребенка проходили бы генетическую экспертизу.




Технология выращивания плода в искусственной матке поможет решить все эти проблемы. При этом никто из молодых родителей даже не задумывается о технологиях генетического усовершенствования своих отпрысков — были бы здоровы, и слава богу. Впрочем, даже стопроцентно здоровые гены не гарантируют полного здоровья малышу. Бывает и так, что один из двух братьев-близнецов начинает буквально поглощать другого, забирая у него все жизненные силы, что в дальнейшем чревато проблемами уже для обоих. Спасти близнецов от столь сильной братской «любви» и поможет искусственная матка.

Другая область применения новых биотехнологий — фетальная хирургия. Это операции на зародышах человека, которые хирурги — ради дородового излечения младенца от пороков сердца — проводят прямо в материнской утробе. Зачастую эти операции очень опасны для жизни не только младенца, но и матери. Теперь же риск можно значительно снизить, поместив малыша в искусственную утробу.

Мамонты и папонты

Конечно, новая биотехнологическая революция открывает перспективы не только перед медициной. Помнится, несколько лет назад директор Музея мамонта СВФУ Семен Григорьев из Якутии делился своими планами о возрождении этих доисторических животных. Требовалось всего ничего — найти живые клетки с ДНК мамонта, причем генокод мамонта был уже вычислен по останкам шерсти. И найти слониху подходящих размеров для вынашивания мамонтенка — все-таки древние мамонты были крупнее нынешних слонов. Правда, сетовал ученый, в этом случае это будет уже не чистокровный мамонт, а полукровка, «слономамонт». Но вот благодаря искусственной матке можно вырастить хоть мамонта, хоть древнего гигантского мастодонта.

Между прочим, возрождение мамонтоводства давно уже стало национальной идефикс якутских ученых. Только представьте себе, какие перспективы открываются перед сельским хозяйством России в случае успешного окончания эксперимента по возрождению мамонтов! Представьте себе стада этих гигантских животных, прекрасно адаптированных для жизни в суровой тундре, которые дают тонны сверхполезного продукта — сотни тысяч лет эволюции и нашего совместного бок о бок проживания с мамонтами привели к тому, что именно мясо мамонтов человеческий желудок усваивает лучше всего. Во всяком случае, так утверждают ученые, исследовавшие влияние мамонтятины на человеческий организм.




Кроме того,— доказывали якутские ученые,— это наш с вами неоплатный человеческий долг! Ведь именно антропогенный фактор привел к полному истреблению мамонтов — проще говоря, первобытные охотники истребили всех этих животных. И теперь, когда мы вышли на новую ступень эволюции, мы должны вернуть к жизни этих удивительных животных.



Вернуться могут не только мамонты, но и другие исчезнувшие виды фауны. Например, стеллерова корова — гигантское водное млекопитающее, истребленная в XVIII веке охотниками Командорских островов. Или сумчатый тасманийский волк, обитавший некогда в Австралии.


Впрочем, гораздо интереснее генным инженерам будет конструировать новые виды — в биологии такие животные называются химерами. И первые образцы химер уже созданы — к примеру, не так давно была получена межвидовая химера овцы и козы, ведутся эксперименты по вживлению части человеческого генома в геном свиньи. Пока что такие эксперименты были ограничены не только морально-нравственными критериями, но и параметрами материнского организма — ведь биологу мало получить химерный зародыш, нужно его еще вырастить и родить. Теперь же, как говорят футурологи, никаких биологических ограничений уже не будет — можно вырастить что угодно, хоть хомяка размером с бегемота, хоть помесь слона и ежа.

Рано или поздно реконструкции подвергнется и сам человек. А уж как изменится сексуальная жизнь человека, трудно себе даже вообразить. Неслучайно первыми тревогу забили феминистки. Стоило профессору Кувабаре опубликовать первые снимки с нерожденной козой в синтетической матке, как его страничка в интернете была атакована возмущенными японскими девушками, опасавшимися, что из-за этого изобретения мужчины в скором времени смогут отказаться от общения с нормальными женщинами.

Ох, чувствуется, затрещат скоро скрепы по всему миру.



Как рождался биотех

От лечения бесплодия к изменению человека как биологического вида — «Огонек» проследил историю будущей революции


  • 1677 – Голландский натуралист Антони ван Левенгук первым рассмотрел в микроскоп и составил описание сперматозоидов.

  • 1780 – Итальянский священник и ученый Лазарро Спалланцани разработал технику искусственного осеменения собак с целью улучшения породы.

  • 1790 – Шотландский исследователь и врач Джон Хантер впервые осуществил внутриматочную инсеминацию женщины.

  • 1827 – Немецкий врач Карл Эрнст фон Баер первым составил описание яйцеклетки человека. Также была осуществлена первая успешная попытка оплодотворения яйцеклетки in vitro у млекопитающих (кроликов и морских свинок) с последующим рождением потомства.

  • 1897 – Российский академик Викторин Груздев провел исследование о возможности оплодотворения по методу ЭКО одной крольчихи донорской яйцеклеткой, взятой у другой крольчихи.

  • 1961 – Врачи Всемирной организации здравоохранения разработали методику оценки жизнеспособности недоношенных новорожденных. Считалось, что ребенка можно выходить только при рождении после 28 недель беременности (из стандартных 38–42).

  • 1977 – Появление технологий реанимации недоношенных детей. Нижний порог жизнеспособности сдвигается до 22 недель.

  • 1978 – Рождение первого в мире «ребенка из пробирки» Луизы Браун. До этого было сделано свыше 600 неудачных попыток ЭКО. В СССР первый ребенок из пробирки был рожден в 1986 году.

  • 1996 – Рождение клонированной овечки Долли, созданной Яном Вилмутом и Кейтом Кэмпбеллом в Рослинском институте, в Шотландии. Сегодня ученые клонировали практически все виды животных и даже, как утверждают анонимные источники из Южной Кореи, человека.

http://www.kommersant.ru/doc/2388134

Profile

donmigel_62: (Default)
donmigel_62

March 2014

S M T W T F S
       1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 1819202122
23242526272829
3031     

Syndicate

RSS Atom

Style Credit

Expand Cut Tags

No cut tags