donmigel_62: (кот - учёный)
[personal profile] donmigel_62

Что нам стоит дом построить, нарисуем, будем жить


Кандидат химических наук Александр Леонтьев.

С помощью графических компьютерных программ конструкторы и дизайнеры могут на экране монитора рассмотреть своё детище со всех сторон и даже заглянуть внутрь. Единственное, чего они были прежде лишены, — возможность пощупать своё произведение руками. Теперь этот пробел устранён — разработанные на компьютерах виртуальные объекты превращаются в реальные предметы с помощью специальных устройств, называемых 3D-принтерами (от англ. 3-dimentional — трёхмерный).

Технология трёхмерной печати впервые появилась в 1986 году, когда американец Чарльз Халл запатентовал процесс, названный им стереолитографией. Суть процесса состоит в том, что компьютер «режет» трёхмерный объект на «слои» толщиной в доли миллиметра, и каждый слой печатается на принтере в натуральную величину. Делают это так: подложку, или платформу, на которой будет находиться физическое воплощение виртуальной модели, погружают в жидкий фотополимер (органическое вещество, затвердевающее под действием света) на глубину, равную толщине элементарного слоя будущего изделия. Затем в действие вступает управляемый компьютером ультрафиолетовый лазер и облучает фотополимер, «рисуя» в нём изображение первого (нижнего) слоя. После того как полимеризация закончится, подложку опускают и лазер формирует второй слой, за ним третий и так далее.

Современные стереолитографические установки позволяют создавать как образцы объёмом до 1 м3 и точностью 0,05—0,15 мм, так и микрообъекты и микроструктуры с разрешением 1—70 мкм. Несмотря на высокую себестоимость оборудования и расходных материалов, стереолитографирование многократно ускоряет процесс изготовления физической модели: объекты (прототипы) любой сложности по их компьютерным моделям могут быть «напечатаны» на 3D-принтере всего за несколько часов, максимум — дней. Подобный подход получил название быстрого прототипирования и ныне стал уже стандартом при проведении научно-исследовательских и опытно-конструкторских работ.

Однако не всегда для изготовления деталей и моделей годятся полимеры. Поэтому в промышленности нередко используют другую технологию трёхмерной печати — избирательное лазерное спекание (ИЛС). Для такого вида «печати» применяют мощные лазеры на углекислом газе, излучение которых способно спекать либо сплавлять частицы порошков самой различной природы — от термопластичных полимеров, воска и обычного сахара до керамики, титана, алюминия и сталей.

Многообразие материалов позволяет «печатать» самые разные объекты. Полученные таким способом изделия, как правило, имеют шероховатую поверхность и пористую структуру.

Зачастую лазерное спекание применяют для двухкомпонентных смесей, например металла с полимером. В этом случае легкоплавкий компонент выступает в качестве связывающего материала. После обжига готового изделия частицы пластмассы выгорают, а частицы металла спекаются. При необходимости такую «губчатую» деталь можно пропитать металлическим расплавом (например, сталь/бронза), что придаст ей относительно однородную структуру.

Лазерное излучение не единственный способ обеспечить локальный нагрев частиц порошка. Разработана настольная модель 3D-принтера, где спекание полимерных порошков осуществляется нагревательными элементами «печатающей» головки. Подобная технология получила название избирательного термоспекания — ИТС. А существующий в единственном экземпляре 3D-принтер Solar Sinter, созданный в 2011 году студентом Лондонского королевского колледжа искусcтв Маркусом Кайзером, использует полутораметровую линзу Френеля. Во время испытаний, проведённых в пустынях Египта, с помощью солнечных лучей удалось расплавить обычный песок и сформировать из него трёхмерные объекты.

Термин «3D-принтер», который используется для обозначения любого устройства, послойно создающего физические объекты, первоначально относился к конкретному аппарату. В 1993 году в Массачусетском технологическом институте были разработаны и запатентованы так называемая технология 3D-печатания и оборудование для неё. Строго говоря, именно эту разработку корректно называть 3D-принтером.

Построение слоя в таких устройствах осуществляется с помощью одной либо нескольких печатающих головок, подобных тем, что применяются в обычных струйных принтерах. Сопла головок распыляют мельчайшие капельки клеящего вещества по поверхности порошка, распределённого тонким слоем на специальной платформе. Возможности метода позволяют комбинировать самые различные материалы (гипс/вода, сталь/акриловая смола, инертные наполнители/воск и т.д.).

По такому же принципу работает удивительная машина D-shape, с помощью которой можно строить дома высотой до двух этажей и площадью до 55 м2. На поверхность фундамента слоем до 10 мм насыпают песок, смешанный с катализатором. После этого по заданной траектории проходит печатающая головка с соплом, через которое подаётся специальное клеящее вещество. Полученная смесь «схватывается», и образуется материал, не уступающий по прочности бетону. Следом укладывается второй слой, и так, пока не дойдёт до крыши.



Архитекторы теперь могут дать волю фантазии, хотя разработчики не указывают, как удалять из здания неиспользованный песок, а также как не позволять песку высыпаться через формируемые дверные и оконные проёмы.

Возможности трёхмерной печати широко используют в медицине. С помощью томографии создают послойные изображения исследуемого органа. На их основе строят (а точнее — «печатают») физическую модель, на которой врачи продумывают план хирургической операции.

3D-принтеры нашли и ещё одно применение: позволяют создавать имплантаты для ускорения послеоперационной регенерации участков удалённой костной ткани. Врачи создают точную трёхмерную модель повреждённого участка и «печатают» её из биоразлагаемого сополимера полимолочной и полигликолевой кислот. Для придания прочности полученный микропористый образец покрывают тонким слоем кальций-фосфатной керамики. Уже через восемь недель после вживления керамическое покрытие срастается с краями здоровых участков кости, а спустя полтора года имплантат полностью распадается, уступая место регенерированной костной ткани.

Развитие струйно-порошковой разновидности объёмной печати привело к созданию простых в обращении и относительно недорогих офисных 3D-принтеров. Уже выпускаются устройства для персонального использования, например показанный на фото принтер Cube ценой 1300 долларов и ряд других моделей ценой до 2000 долларов.

Для построения объёмных моделей в них используется так называемый метод послойной заливки экструдируемым расплавом, разработанный ещё в конце 1980-х годов. Полимерная нить, проходя через сопло термоголовки (экструдера), нагревается и в виде расплава подаётся в зону печати, где, застывая, формирует элементы искомой структуры. Принтер Cube снабжается картриджами 10 цветов, которых хватает, чтобы создать 10—12 изделий среднего размера (максимальный размер 14 × 14 × 14 см).

3D-печать постепенно становится распространённым увлечением. Группы любителей объединяются через интернет в сообщества для обмена опытом и идеями. В интернете уже появились сайты компаний, которые охотно и не слишком дорого воплотят в «железе» ваши задумки. А некоторые компании предлагают дизайнерам выкладывать на корпоративных сайтах свои компьютерные модели и обещают авторам приличные гонорары. Правда, лишь в том случае, если на них будут поступать заказы.


Принтер Solar Sinter, созданный Маркусом Кайзером, использует энергию концентрированных солнечных лучей, чтобы спекать песчинки и создавать тем самым трёхмерные объекты — такие, например, как ёмкость для воды.





Луч УФ-лазера, согласно заданной программе, фокусируется на поверхность платформы, покрытой тонким слоем жидкой светочувствительной смолы. В результате фотополимеризации образуется первый слой искомого объекта.


С помощью валика на подложке формируют тонкий слой порошка, который затем облучают лазером. В соответствии с заданной топологией частицы порошка спекаются либо оплавляются, создавая контур первого слоя.


Лопатка газовой турбины и её «напечатанная» прозрачная пластиковая копия, на которой видно расположение каналов охлаждения.


Строительный 3D-принтер имеет раму размером 7,5 × 7,5 м, по которой движется держатель с печатающей головкой. По мере возведения здания рама поднимается вверх по четырём стойкам.


С помощью принтера D-shape можно строить дома с любой формой и расположением внутренних стен, возводить лестницы, колонны, украшать фасад барельефами.


Модель черепной коробки после трепанации, изготовленная на 3D-принтере, так же как и «заплатка», которой закроют отверстие, даёт возможность хирургам спланировать операцию и провести тренировку.


Внешний вид 3D-принтера Cube и изготовленные с его помощью изделия.



Детальное описание иллюстрации

Луч УФ-лазера, согласно заданной программе, фокусируется на поверхность платформы, покрытой тонким слоем жидкой светочувствительной смолы. В результате фотополимеризации образуется первый слой искомого объекта. Платформа затем погружается на толщину следующего слоя и вновь облучается лазером. Процесс повторяется, пока изделие не будет полностью готово.
С помощью валика на подложке формируют тонкий слой порошка, который затем облучают лазером. В соответствии с заданной топологией частицы порошка спекаются либо оплавляются, создавая контур первого слоя. После этого подложку опускают, на первый слой насыпают следующий, и процесс повторяется.
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

donmigel_62: (Default)
donmigel_62

March 2014

S M T W T F S
       1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 1819202122
23242526272829
3031     

Style Credit

Expand Cut Tags

No cut tags