donmigel_62: (кот - учёный)

Первичные чёрные дыры предложено отслеживать по реликтовому излучению

Кажется, нет ничего дальше от реальности, чем попытки обнести чёрную дыру зеркальной стеной. Но именно такая ситуация, судя по всему, могла и впрямь сложиться вокруг чёрных дыр в самом начале истории Вселенной.

В 1974 году физики-теоретики Уильям Пресс (William Press) и Саул Тукольски (Saul Teukolsky) выдвинули идею: если чёрная дыра (ЧД) вращается с достаточной быстротой, свет в меру большой длины волны, проходящий поблизости от неё, будет рассеян дырой, а не поглощён. Далее ЧД можно окружить чем-то вроде зеркала, от которого эти световые волны будет отражаться, а затем рассеиваться дырой ещё раз, потом отражаться, и так далее — как в обычном лазере, усиливаясь за счёт энергии вращения чёрной дыры. Поскольку такая энергия довольно велика, единожды убрав зеркало на одном из направлений, можно получить очень мощный импульс.

Вам кажется, что попытки окружить ЧД зеркальной стеной — это нечто невообразимое? Между тем, по мнению Абрахама Лёба (Abraham Loeb) из Гарвард-Смитсоновского центра астрофизики (США), именно такая ситуация могла сложиться вокруг чёрных дыр в начале времён.

Чёрнодырная бомба? (Иллюстрация Stuart Daly.)

Его концепция касается так называемых первичных (или изначальных) чёрных дыр — объектов третьего класса, не являющихся ни ЧД звёздных масс, ни сверхмассивными. Подобные ЧД должны были образовываться в ранней Вселенной в местах, где плотность материи была слишком высокой, без таких процессов, как коллапс звезды. То есть схлопываться в первичные ЧД должны были особо насыщенные газом области юной Вселенной, устраивая что-то вроде «Большого взрыва наоборот», только в ограниченном регионе пространства...


Если эти первичные ЧД — пространственно микроскопические и пока не обнаруженные наблюдениями, — и существовали, то основная их масса должна быть невелика — от самых лёгких, по массе меньших, чем Луна, до тех, что чуть побольше (вплоть до габаритов холодильника) и имеют массу Юпитера.

Собственно говоря, вы уже поняли, куда гнёт американский исследователь. А что если, спрашивает он, такие первичные ЧД и есть реальные явления, стоящие за словосочетанием «тёмная материя»? Чтобы объяснить наблюдаемую Вселенную корректно, такая масса должна быть примерно в 5,5 раза больше, чем у всей обычной барионной материи, такой как звёзды, газ, пыль и прочее. Следовательно, физики, ныне ищущие вимпы и иные частицы-кандидаты на роль тёмной материи (ТМ), согласно Абрахаму Лёбу, лезут не на то дерево. «Субатомные частицы предсказываются спекулятивными теориями физики частиц, в то время как ЧД определённо существуют и могут иметь разные массы, — говорит учёный. — Это не такой уж большой шаг вперёд — представить, что они могут отвечать и за ТМ».

Однако первичные ЧД должны порождать видимые астрономам события микролинзирования, скажете вы, а таких пока не слишком много. Опять же первичные ЧД должны испаряться гораздо быстрее более массивных современных, и в конце жизни они могут дать довольно сильную вспышку в гамма-диапазоне. Где же они? Тут и вступает в игру первый тезис г-на Лёба: в ранней Вселенной коллапс обычного вещества вряд ли был настолько симметричным, чтобы породить ЧД, которая не являлась бы вращающейся. А значит, стоит лишь окружить её зеркалом — и смертный час такой дыры будет выглядеть вовсе не так, как ожидали астрономы: вместо умеренной силы гамма-вспышки случится что-то вроде мощного взрыва, при этом ещё и направленного.

Да, но откуда в космосе брались зеркала, чтобы окружать ими первичные ЧД? Вернёмся к Большому взрыву, предлагает Абрахам Лёб. На каждые 10 млрд фотонов приходилась одна частица материи других типов — и там было довольно много электронов. Пока их частота выше частоты всех фотонов, которые электроны встретят на своём пути, плазма, содержащая электроны, будет отражать все фотоны, работая как зеркало, причём окружающее первичные ЧД со всех сторон.

Частота колебаний электронов зависит от их плотности в пространстве, и по мере расширения Вселенной неизбежно наступил бы момент, когда частота упала бы ниже критического уровня, нужного, чтобы удержать фотоны, — и вот вы уже наблюдаете чёрнодырную бомбу в действии.

Очевидно, если такие явления существуют, то их в принципе можно найти в окружающем космосе, даже несмотря на то, что момент падения частоты электронов может наступить в далёком прошлом Вселенной. Например, окрестности первичной ЧД после «выключения зеркала» должны прилично нагреться при взрыве, и всё это породит большие отклонения в спектре реликтового излучения, имеющего температуру 2,7 К и идущего к земному наблюдателю со всех сторон.

Один из физических нобелиатов-2006 Джон Мазер (John C. Mather), , «у меня нет ни малейших идей о том, почему нечто подобное до сих пор никому не приходило в голову». Мол, «это довольно интересно».
замечает
Г-н Лёб и Ко уже провели быстрый первичный анализ реликтового излучения, надеясь выявить подобные отклонения от ожидаемой картины. Увы, действительно большие первичные ЧД таким образом выявить не удалось, и верхние ограничения по массе ещё существующих на сегодня первичных ЧД должны равняться 1% от ожидаемой массы тёмной материи.

Рано или поздно первичные ЧД должны были выдать сильную вспышку по типу лазерной. (Илл. Shutterstock.)

Более того, даже если таких следов первичных ЧД по отклонениям реликтового излучения не удастся обнаружить вообще, сам механизм превращения вращающейся ЧД в эдакую бомбу, испускающую сверхмощное излучение, стоит держать в памяти. В самом деле: физики далеко не уверены, что знают все частицы окружающего мира. И при определённых условиях некие пока неведомые частицы, по свойствами близкие к фотонам, могут создать подобный эффект сверхмощной вспышки на базе достоверно существующих современных нам вращающихся чёрных дыр, среди которых есть и сверхмассивные.

Ну а если наблюдения всё же выявят аномальные отклонения, связанные с первичными ЧД, или, напротив, покажут их отсутствие, это станет совершенно новым методом проверки существования первичных чёрных дыр в ранней Вселенной, чего ранее предложенными методами сделать было почти невозможно.

Отчёт об исследовании опубликован в журнале Physical Review D, а его препринт доступен здесь.

Подготовлено по материалам NewScientist. Изображение на заставке принадлежит Shutterstock.
donmigel_62: (кот - учёный)

Галактики начали группироваться очень рано

Международная группа астрономов, применив новый способ комбинации данных различных космических телескопов, открыла четыре древнейших из известных скоплений галактик.

Четыре скопления, существовавших уже через 3,7 млрд лет после Большого взрыва, каждое из которых может содержать тысячи галактик, было обнаружено учёными во главе с Дэвидом Клементсом (David Clements) из Имперского колледжа Лондона (Великобритания). Сами астрономы считают более важным делом методику, позволившую открытию осуществиться. Взяв её на вооружение, они надеются отыскать ещё тысячи подобных образований.

Телескоп «Гершель» в представлении художника (иллюстрация ESA / AOES Medialab / NASA / ESA / STScI).

Хотя древнейшие из вновь открытых галактик мы видим уже менее чем через миллиард лет после Большого взрыва, с их скоплениями дело обстоит куда сложнее: их непросто обнаружить даже тогда, когда они уже достигли значительных размеров. Оттого до сих пор самые возрастные известные скопления датировались моментом, лишь на 9 млрд лет предшествовавшим нынешнему. Четыре «свежих» скопления на миллиард лет древнее, и самое главное — наконец-то нащупан метод, который позволит искать их в ещё более удалённых и старых регионах пространства.


Чтобы добиться этого, астрономы комбинировали данные космической обсерватории «Планк», наблюдавшей всё небо сразу, и космического же телескопа «Гершель», пристально вглядывавшегося в отдельные сектора небесной тверди. «Планк» позволяет выявить многообещающие в смысле дальнего ИК-излучения точки сразу во многих местах, и всего таких локаций оказалось 16, причём многие из них расположены ближе и являлись уже известными галактиками. А вот четыре из них при тщательном осмотре «Гершелем» показали принципиально иную природу: они состояли из множества слабых далёких источников, как это и характерно для удалённых галактических кластеров.

По оценкам учёных, отдельными частями этих скоплений являются растущие эллиптические галактики, исключительно быстро образующие звёзды — с темпами наработки новых светил, превышающими тысячу солнечных масс в год.

Три изображения (цвета искусственные), полученные «Гершелем». Голубые, зелёные и красные пятна представляют ИК-излучение на длинах волн в 250, 350 и 500 мкм соответственно. (Иллюстрация D. Clements / ESA / NASA.)

Особо подчёркивается, что в снимках «Планка» есть множество районов, из которых исходит усиленное дальнее ИК-излучение, и это позволяет надеяться на открытие ещё до 2 тыс. скоплений после их первичного отбора из данных «Планка» и последующей углублённой проверки «Гершелем».

Отчёт об исследовании вскоре будет опубликован в журнале Monthly Notices of the Royal Astronomical Society, а с его препринтом можно ознакомиться здесь.

Подготовлено по материалам Королевского астрономического общества.
donmigel_62: (кот - учёный)

Классическая музыка в исполнении дуэта космических аппаратов Voyager 1 и 2

Космический аппарат Voyager


Данные измерений и другая информация, собранная на их пути следования космическими исследовательскими аппаратами Voyager 1 и 2, уже позволила ученым более подробно изучить внешние планеты Солнечной системы и узнать много нового о процессах, происходящих на границе гелиосферы с межзвездным космическим пространством. А не так давно, физик Доменико Вичинанца (Domenico Vicinanza), менеджер высокоскоростной европейской коммуникационной сети GEANT, взяв за основу около 320 тысяч данных измерений, произведенных двумя космическими аппаратами, создал фрагмент космической классической музыки.


"Я использовал различные группы инструментов и различные музыкальные ряды для того, чтобы представить в музыкальном виде оба космических аппарата" - рассказывает Вичинанца. Следует заметить, что основой созданного музыкального фрагмента являются данные о количестве протонов с часовым интервалом, собранные датчиками космических лучей аппаратов Voyager 1 и 2, которые разделяют сейчас многие миллиарды километров космической пустоты

Но, кроме музыкальной ценности, у этой пятиминутной композиции имеется некоторая научная ценность. "Мелодия является одним из видов предоставления научной информации, который в некоторых случаях гораздо практичней, нежели анализ цифровых данных, хранящихся в громоздких таблицах. Математический спектральный анализ акустических данных мелодии в некоторых случаях может привести к обнаружению закономерностей или других явлений, которые скрыты в исходных данных и которые чрезвычайно сложно выявить другими путями" - рассказывает Вичинанца.


Следует заметить, что на счету Доменико Вичинанца находится создание уже нескольких подобных музыкальных композиций. В свое время им были созданы композиции на основе данных аппарата Voyager 1, Большого Адронного Коллайдера, данных сканирования мозга и звуков, издаваемых при извержении вулканов.
donmigel_62: (кот - учёный)

Обнаружена древнейшая звезда

Астрономы из Массачусетского технологического института отыскали в нескольких десятках тысяч световых лет от нас светило SMSS J031300.36-670839.3 — и выяснили, что это одна из древнейших звёзд во Вселенной.

Оценки содержания элементов тяжелее водорода показали, что железа там кот наплакал, и это, безо всяких сомнений, указывает на светило второго поколения звёзд, возникшего сразу после первых звёзд Вселенной, когда тяжёлых элементов было куда меньше, чем, к примеру, у любого «одногодка» Солнца. В общем, железа даже и не обнаружили: у астрономов есть лишь уверенность, что его не более одной десятимиллионной от показателя нашего Солнца. Это рекорд среди известных на сегодня тел такого рода. По всей видимости, SMSS J031300.36-670839.3 старше 13 млрд лет, хотя насколько именно — пока загадка.

После взрыва звезды-прародителя остались следы, во многом напоминающие остатки сверхновой G292.0+1.8, хотя вспышка последней была сильнее. (Иллюстрация NASA.)


Более того, отсутствие обнаруживаемых количеств железа говорит, по словам учёных, о том, что нет иного выхода, кроме признания того, что светила первого поколения, это железо наработавшие, были куда менее мощными, чем считалось. Похоже, звезда-прародитель просто не смогла эффективно выбросить свои тяжёлые элементы из ядра, поскольку взрыв в конце её жизненного пути был не слишком мощным.

Совершенно неожиданно и то, что, если расчёты астрономов верны, энергия взрывов звезды-прародителя была даже меньше, чем у сегодняшней обычной сверхновой, — и это несмотря на то, что её массу оценивают в 60 солнечных, то есть как исключительную — настолько, что после взрыва на месте прасветила образовалась чёрная дыра.

«До некоторой степени мы должны отступить назад, к чертёжной доске [и переработать наши модели звёзд прошлого], потому что вариативность среди самого первого поколения светил значительно превзошла наши ожидания», — признаётся Анна Фребель (Anna Frebel), один из авторов работы, посвящённой открытию.

Кроме того, данные по спектру SMSS J031300.36-670839, полученные с помощью «Магеллановых телескопов» (Чили), показали, что углерода там по меркам нашего собственного светила хотя и мало, но всё же в тысячи раз больше, чем железа. Именно это указало на слабость взрыва звёзд-предков первого поколения: углерод находился в их внешних слоях, в то время как железо — в ядре.

Слабость подобных взрывов наводит на мысль об альтернативном сценарии разрушения первых светил: вместо мощных вспышек сверхновых могли иметь место менее сильные взрывы, в которых изначальные звёзды теряли лишь внешние слои, обогатившие углеродом газовые облака, из которых возникла SMSS J031300.36-670839.3, в то время как богатое железом ядро сколлапсировало в чёрную дыру, избежав разлёта вместе с внешними слоями.

Спектр этой звезды предельно необычен: хорошо видны только следы водорода, углерода (на 4 300 Å) и пара линий от земной атмосферы. (Иллюстрация Anna Frebel.)

То, что взрывы первозвёзд были сравнительно немощны, означает, что «эмбрионы» первых галактик формировались не в столь враждебных условиях, как предполагалось до сих пор: им не угрожал разнос газа во все стороны с потерей целостности, так как взрывы малой мощности позволяли отдельным частям первых галактик оставаться вместе и относительно быстро эволюционировать.

Открытие SMSS J031300.36-670839.3 — по-видимому, древнейшей из известных звёзд — означает, что нам стоит переосмыслить то, как формировались и развивались предшествовавшие им самые первые звёзды, ибо современные модели их эволюции не дают результатов, при которых взрыв в конце жизненного цикла мог бы получиться столь слабым, чтобы не разбросать ядро, ограничившись лишь внешними слоями.

Отчёт об исследовании опубликован в журнале Nature, а с его препринтом можно ознакомиться здесь.

Подготовлено по материалам Массачусетского технологического института.

donmigel_62: (кот - учёный)

Европейский космический телескоп Gaia сделал первый "пристрелочный" снимок

Снимок скопления NGC1818


6 февраля 2014 года новый космический телескоп Европейского космического агентства Gaia передал на Землю первый сделанный им снимок. На этом снимке видна часть звездного скопления NGC1818 в одном из регионов Большого Магелланова Облака, карликовой галактики, являющейся спутником нашей галактики, галактики Млечного Пути. Данный снимок был сделан телескопом в ходе процедуры по первоначальной настройке и калибровке оборудования телескопа, и, как это ни парадоксально, снимок хоть и является первым снимком, сделанным телескопом, он может стать одним из его последних снимков поскольку основной способ эксплуатации телескопа не предусматривает передачи на Землю полных изображений.


Напомним нашим читателям, что телескоп Gaia отправился в космос 19 декабря 2013 года. Через некоторое время он достиг расчетной точки, находящейся в районе точки Лагранжа L2 системы Солнце-Земля, на удалении 1.5 миллиона километров от Земли. Как только все процедуры предварительной подготовки будут завершены, телескоп приступит к его нормальной работе, передавая на Землю огромные массивы собранных данных. Как уже говорилось выше, в этих данных не будет полных снимков участков звездного неба. Вместо этого телескоп будет передавать маленькие изображения каждой из обнаруженных звезд, снабженные некоторой дополнительной информацией.

Телескоп Gaia


Цель миссии Gaia заключается в создании самой подробной и точной картой Млечного Пути. Телескоп произведет точные измерения характеристик, положения и траектории движений каждой из миллиарда звезд нашей галактики. При этом, количество звезд, которые попадут в фокус телескопа, составит всего один процент от общего количества звезд в галактике, которое составляет около 100 миллиардов. Просматривая постоянно космическое пространство, телескоп Gaia за пять лет сосредоточит свое внимание на каждой из миллиарда звезд в среднем 70 раз. Это позволит определить точное местоположение каждой звезды и траекторию ее движения. Помимо этого будут произведены измерения ключевых характеристик каждой звезды, такие, как ее яркость, температура и химический состав поверхности.

Для того, чтобы выполнить поставленную перед ним задачу, телескоп Gaia будет медленно вращаться, охватывая полем зрения двух телескопов различные участки космоса. Свет, фокусируемый этими телескопами, будет падать на датчик его цифровой камеры, самой большой на сегодняшний день камеры, которая когда либо была запущена в космос и которая имеет разрешающую способность в миллиард пикселей. Для выполнения этой сложной работы оба телескопа должны быть четко синхронизированы и сфокусированы, кроме этого, все остальное оборудование и инструменты должны быть откалиброваны с максимально возможной точностью. Выполнение этой кропотливой процедуры займет несколько месяцев и только по ее окончанию телескоп приступит к выполнению своей основной пятилетней миссии.

Камера телескопа Gaia


Первый и самый главный проход по всему миллиарду звезд телескоп проведет за первые шесть месяцев, оставшееся время телескоп будет использовать для повторных наблюдений за звездами, что позволит выяснить их траектории движения, что впоследствии будет использоваться для построения модели нашей галактики. Все собранные за пять лет данные будут обработаны и полный каталог, созданный при помощи телескопа Gaia, станет доступен спустя три года после завершения его миссии. Конечно, научная группа миссии будет делать и промежуточные выпуски данных, а данные, касающиеся быстротекущих процессов, таких как взрывы сверхновых звезд, будут публиковаться спустя несколько часов после их обнаружения.

В конечном счете, архив собранных данных будет занимать более миллиона гигабайт, что эквивалентно приблизительно 200 тысячам DVD-дисков. А сбором, обработкой и каталогизацией собираемых данных занимается Консорциум обработки и анализа данных Gaia (Gaia Data Processing and Analysis Consortium), членами которого являются более 400 человек из различных научных учреждений Европы.

donmigel_62: (кот - учёный)

Эй, НАСА, а черные дыры таки существуют! (перевод)

«Моя цель проста: полностью разобраться в устройстве Вселенной и понять, почему она такая и зачем она существует».
Стивен Хокинг

От переводчика. А вы,заметили что тема космоса становится всё популярнее? Curiosity покоряет Марс, Virgin Galactic продает билеты на суборбитальные космические полеты, а Китай стал третьей страной, добравшейся до Луны. На самом деле, еще большие изменения происходят в космической теории. В этой статье  речь пойдет о том, как изменилось представление ученых о черных дырах за последние пару лет. В переводе не исключены ляпы — пишите в личку или подробно (чтобы всем было понятно и интересно) в комментариях. Заранее большое спасибо и приятного чтения!


(Претензии на тему jpeg/png отправлять автору статьи.)






Для нас с вами, живущих на задворках Вселенной, главным источником гравитации является планета Земля. Чтобы вырваться из ее гравитационных объятий, нужно превысить вторую космическую скорость — наименьшую скорость, необходимую для преодоления гравитационного притяжения, создаваемого нашей планетой. Люди уже не раз успешно это делали — всего и делов, что разогнаться до 11,2 км/с (0,004% скорости света).



По сравнению с тем, что творится в космосе, скорость совсем не большая. С одной стороны, наша планета обладает приличной массой 6 × 10^24 кг. С другой, вся эта масса распределена в довольно большом объеме пространства, поэтому и скорость побега с Земли такая скромная.

Позволь нам законы физики сжать Землю в намного более плотный комок материи, вторая космическая скорость выросла бы значительно. Уменьшите нашу планету до шара радиусом менее 1 см — и с нее уже никто и ничто не сможет улететь. Даже свет. Вот так легким движением руки Земля превращается в черную дыру.



Скорость света в вакууме — общий предел скорости. Во Вселенной есть места сосредоточения огромных масс в таком небольшом объеме, что из них ничто не может вырваться. Долгое время черные дыры существовали только в теории: предполагалось, что невозможно уместить столь огромную массу в крохотном объеме пространства. Ситуацию изменили несколько занятных космических открытий.

Например, были найдены абсолютно темные участки космоса с невероятно сильным рентгеновским и радиоизлучением. Или звезды, разрываемые на части: их вещество куда-то утекало, но поблизости не было ни одной сверхмассивной звезды. Наконец, в самом центре нашей галактики звезды обращаются вокруг невидимого объекта, масса которого предположительно составляет около 4 миллионов масс Солнца. И ни лучика света.



Да это же и есть черная дыра! Общая теория относительности Эйнштейна предсказывает, что черные дыры должны искажать пространство, создавая интересные оптические эффекты (достаточно лишь посмотреть на пространство за черной дырой).



Так что же, такие объекты совершенно, целиком и полностью черные и с них ничего не может улететь? Вопрос логичный, но он очень долго оставался без ответа. Дело в том, что согласно теории Эйнштейна черные дыры были классическими объектами, то есть должны были описываться непрерывным пространством-временем и обладать массой, зарядом и моментом импульса. Но мы знаем, что в нашей реальности материя и энергия по своей сути, скорее, дискретны, чем непрерывны. К сожалению, подружить квантовую механику с общей теорией относительности пока никому не удалось.



Кажется, по своей природе Вселенная все же дискретна, но квантовой теории пространства-времени по-прежнему нет. А раз нет квантовой теории тяготения, единственный способ разобраться с черными дырами — вести расчеты нашей дискретной Вселенной (вот тут квантовая теория поля и пригодится) в искривленном пространстве-времени, предсказанном общей теорией относительности.



Непростая задача. Уж я-то знаю: сам занимался расчетами. И был далеко не первым. Первым был Стивен Хокинг: в середине 70-х он довел до ума модель дискретной по своей сути Вселенной, существующей в искривленном пространстве-времени (а искривлялось пространство из-за черной дыры).

Итак. В вакууме постоянно рождаются и исчезают квантовые флуктуации, то есть пары «частица + античастица». В то же время есть горизонт событий черной дыры — всё, что в него провалится, уже не сможет выбраться обратно.



А что если флуктуация появится прямо на горизонте событий? Ведь в этом случае античастица имеет шанс провалиться в него, а частица — вырваться наружу! По закону сохранения энергии черная дыра обязана терять массу. Спектр излучения черной дыры такой же, как у абсолютно черного тела, и определяется ее массой и искривлением близлежащего пространства. (Правильно рассчитать спектр поможет квантовая теория поля.) Все остальные характеристики ЧД — продолжительность жизни, время испарения, скорость потери энергии — определяются этим феноменом, который мы с вами знаем под названием «излучение Хокинга».

Другими словами, черные дыры не такие уж черные!



Пусть у нас нет законченной всеохватывающей квантовой теории тяготения. Пока мы неплохо справляемся с теми инструментами, что у нас есть: 1) общая теория относительности для описания пространства и времени, 2) квантовая теория поля с уравнениями для работы с материей и энергией. Представьте себе, что вы летите в черную дыру. Сначала вы попадете в аккреционный диск, затем обнаружите внутреннюю стабильную круговую орбиту, а за ней… А за ней уже ничего не должно быть: черная дыра поглощает всё и вся и быстренько прячет это за свой горизонт событий. Попав внутрь, обратно вы уже не выберетесь. Ничего не выберется. Кроме излучения Хокинга.

Но пару лет назад одна работа наделала немало шума. В ней утверждалось, что при пересечении горизонта событий вас испепелит «огненная стена» черной дыры.



Та работа показала, что три следующих утверждения не могут быть истинными одновременно.


  1. Излучение Хокинга находится в чистом квантовом состоянии.

  2. Информация, которую содержит излучение, испускается вблизи горизонта событий, а на микроскопическом расстоянии от горизонта событий действует низкоэнергетическая эффективная теория поля.

  3. Падающий в черную дыру наблюдатель не увидит на горизонте событий ничего необычного.


Это интересный парадокс. Раньше мы думали, что излучение Хокинга не допускает потери информации, а горизонт событий реально существует и из него ничего не может вылететь, а также что при пересечении горизонта событий мы не столкнемся с «огненной стеной» (то есть не увидим ничего необычного — см. утверждение № 3). И все же одно из трех утверждений должно быть ложным. Какое именно?

Часто говорят, что физика движется вперед благодаря таким открытиям. Но верно и другое: решение этого (или любого другого) парадокса не зависит от мнения самого знаменитого, важного и уважаемого ученого в этой области. Оно зависит исключительно от самих научных заслуг.



Самуэль Л. Браунштайн, Стефано Пирандола, Кароль Жичковски. Возможно, эти имена вам неизвестны. Но в прошлом году эти физики открыли кое-что очень интересное. Вот смотрите: излучение Хокинга происходит из пары квантово запутанных частиц, одна из которых падает в черную дыру, а другая умудряется сбежать на свободу. Если разорвать их запутанность, измерив свойства сбежавшей частицы, на горизонте событий должна возникнуть та самая огненная стена — барьер из частиц с высокой энергией. Вот вам и парадокс: одна частица падает внутрь, другая вылетает наружу, и они квантово запутанны.

Самое интересное, что чем больше запутанность на горизонте событий черной дыры, тем позднее опускается огненный занавес. Больше запутанность — больше времени. А в нашей Вселенной, как написали эти ученые, запутанность на всех горизонтах событий максимальна, а значит, время, необходимое для появления огненной стены, бесконечно. Неплохой вывод. Пусть он не решает парадокс, но хотя бы дает нам понять, что проблема, скорее всего, не в утверждении № 3.

Затем случилось вот это:



Хокинг предложил избавиться от утверждения № 2. Просто убрать понятие классического горизонта событий. Причина, может, конечно, и в этом, но предложение, мягко говоря, непоследовательное и не кажется правильным. Пресса дружно подхватила идею, заголовки статей пестрили словами «Черные дыры не существуют!», но ни дискретность Вселенной, ни существование излучения Хокинга вовсе не отменяют понятие горизонта событий.

Ну ладно, раз уж ученые поняли, что проблема не в утверждении № 3, может быть, стоит повнимательнее присмотреться к утверждению № 1? Следует заметить, что говоря о невозможности потери информации (сохранении унитарности), мы всегда подразумевает излучение в чистом состоянии. Но что если излучение Хокинга не находится в квантово чистом состоянии? Так мы избежали бы потери информации!

На эту темы есть два очень интересных исследования. Вместе с упомянутой выше работой Браунштайна, Пирандолы и Жичковского они кажутся мне важнейшими со времени появления парадокса изысканиями. И ни одна из этих работ не связана с Хокингом или Зюскиндом.



Представьте себе, что у вас есть две пары частиц с одинаковым моментом и в обеих парах одна частица проваливается за горизонт событий, а другая сбегает. Если обе провалившиеся частицы квантово запутанны со сбежавшими, происходит потеря информации, поскольку теряется унитарность.

Но братья Верлинде доказали, что унитарность можно сохранить, ведь частицы с одинаковым моментом взаимозаменяемы: вместо двух пар «одна частица провалилась, другая вылетела» мы получаем пары «обе провалились» и «обе вылетели», тем самым лишая частицы запутанности.* И больше никаких квантово запутанных частиц по разные стороны горизонта событий! (И никакой огненной стены.) Вот это идея! Гм, но как же все-таки разрешается наш парадокс огненной стены?



Но совсем недавно Сабина Хоссенфельдер опубликовала работу о том, что превращения, сохраняющие информацию, обладают некоторыми чрезвычайно интересными свойствами.


  • Обмен для распутывания частиц (чтобы информация не пересекала горизонт событий) может быть локальным, то есть он может происходить между двумя точками, которые постоянно связаны между собой причинно.

  • Такое локальное взаимодействие может происходить в одном и только в одном месте прямо на горизонте событий.

  • Наконец, самое важное: между состояниями излучения, испускаемого в разное время, нет запутанности. (Запутанность была бы необходима для квантово чистого состояния.)


Эти три работы показывают нам, что никакой огненной стены нет, а парадокс решается, если ложно утверждение № 1, говорящее о чистом состоянии излучения Хокинга.



Обо всем этом вы не узнаете из СМИ, потому что заголовок такой статьи был бы скучным и всё это кажется сложным. Да и где тут громкие имена? Но это правда: излучение Хокинга не находится в чистом состоянии, а значит, огненной стены нет, как нет и парадокса.

Нам еще многое предстоит узнать и понять о черных дырах, горизонтах событий и поведении квантовых систем в сильно искривленном пространстве-времени. Впереди еще много интересных исследований. Правда, решая кое-какие моменты, они ставят перед нами еще больше вопросов. Зато теперь мы точно знаем, что не поджаримся, когда будем падать в черную дыру. Причиной смерти будет «спагеттификация», а не пожар!



Настоящим парадокс огненной стены объявляется закрытым!

* Огромное спасибо Сабине Хоссенфельдер, автору этой работы, за подробное объяснение ее теоретических выкладок и множества нюансов по этой теме. Ее реакцию на громкое заявление Хокинга можно прочитать здесь.

http://habrahabr.ru/post/211693/
donmigel_62: (кот - учёный)
Оригинал взят у [livejournal.com profile] haritonoff в Планеты в зоне обитания

HD 28185 b (большая на заднем плане) – экзопланета, вращающаяся вокруг звезды HD 28185 в 128,5 световых годах от Солнца. Год планеты – 383 земных дня, масса планеты – 1810 масс Земли (Масса Юпитера всего в 317 раз больше массы Земли) – это газовый супергигант. Планета находится в обитаемой зоне или "зоне Златовласки" – то есть вращается на таком расстоянии от своей звезды, что на ней не слишком холодно и не слишком жарко для существования жидкой воды. Если состав планеты подобен составу Юпитера, то можно ожидать, что в верхних слоях атмосферы планеты условия могут способствовать образованию облаков из водяного пара. Неизвестно, может ли существовать какая-то форма жизни на газовых гигантах, но достаточно крупные их спутники (большой на переднем плане) вполне могут быть обитаемыми – на примере Титана мы знаем, что спутники планет-гигантов могут иметь достаточно плотную атмосферу, чтобы содержать на поверхности воду в жидком виде. Моделирование приливных взаимодействий показывает, что вокруг HD 28185 б вполне могли бы зародиться землеподобные спутники: ее большая масса, более шести масс Юпитера, делает подобный сценарий более вероятным, чем если бы планета была с Юпитер или меньше.

Но вот есть там, рядом с HD 28185 b эти землеподобные спутники, нет там землеподобных спутников – наука пока не в курсе дела. На верхней картинке – просто фантазия художника. Количество обнаруженных экзопланет – планет, обращающихся вокруг других звезд – на сегодняшний день исчисляется тысячами. Из них лишь несколько десятков, возможно, находятся в обитаемой зоне. Из этих нескольких десятков пока лишь семь планет земного типа точно существуют и точно находятся в этой самой обитаемой зоне – то есть их существование подтверждено несколькими методами и независимыми наблюдениями. Они есть:

Read more... )
donmigel_62: (кот - учёный)

Парадокс огненной стены закрыт, классическая чёрная дыра спасена?

И всё это достижимо без модифицирования горизонта событий, утверждает немецкий физик Сабина Хоссенфельдер. Почему она не видит ничего достойного внимания в последней работе Стивена Хокинга? И что из всего этого следует?

Вы уже знаете это: Стивен Хокинг посчитал лучшим решением парадокса «огненной стены» предположение о том, что у чёрной дыры (ЧД) нет настоящего горизонта событий и налицо лишь кажущийся горизонт, который не является — в отличие от традиционной ЧД — вечным.

Что ж, в январе с. г. решение проблемы огненной стены было предложено не только им. Работа Сабины Хоссенфельдер (Sabine Hossenfelder) из Северного института теоретической физики (Швеция) утверждает, что такого парадокса нет, а потому модификации классических представлений о ЧД до некоторой степени не вполне оправданны.

Квантовая запутанность частиц, появляющихся у горизонта чёрной дыры, создаёт парадокс «огненной стены» — но только если запутанность между ними не исчезнет. (Здесь и ниже иллюстрации JPL / NASA.)

Чтобы полностью понять настоящее, часто надо вернуться в прошлое, и глубины первого и второго действия иногда прямо пропорциональны: на сей раз в прошлое придётся отправиться хотя бы лет на сорок.



Когда идея горизонта событий замаячила над головами учёных, стали возникать неприятные вопросы. Вот, например: горизонт событий (классический) пресекается только в одном направлении, но это, кажется, противоречит термодинамике! При стремлении температуры к абсолютному нулю энтропия тел системы тоже стремится к нулю — следовательно, абсолютного нуля нельзя достичь ни в каком конечном процессе, связанном с изменением энтропии: вы будете бесконечно приближаться к нему по асимптоте, и только, по типу Ахиллеса, догоняющего черепаху.

Но если абсолютный нуль недостижим — значит, все тела должны хоть что-то да излучать, как-то отдавать хоть чуть-чуть тепла. Однако горизонт событий вроде бы ничему излучаться не даёт, ведь его даже свет не может преодолеть. Тогда — ровно сорок лет тому назад — Стивен Хокинг выдвинул идею так называемого излучения Хокинга. Чтобы ЧД «начала» излучать, учёный использовал квантовую механику: поскольку мы не можем знать точную энергию объекта в любой момент, она может серьёзно колебаться, хотя среднее её значение при этом будет неизменным. Поэтому около горизонта событий, рассуждал физик в ту пору, может появляться пара частиц («из ничего»), и одна частица из пары будет поймана внутри горизонта (на каплю уменьшая массу ЧД), в то время как другая покинет ЧД как излучение, унося с собой каплю её энергии.

Решение было элегантным, но тогда ещё никто не знал, что через 38 лет из излучения Хокинга, помирившего термодинамику и ЧД, родится другая сущность — парадокс «огненной стены». Дело в том, что пара частиц, рождённых, так сказать, вышеупомянутым квантовомеханическим путём, появлялась «из ничего», будучи квантово запутанной, — а значит, убегание одной частицы и удержание другой такую запутанность разрушает. Квантовомеханически говоря, частицы рождаются в чистом (не смешанном) состоянии, а горизонт событий это чистое состояние разрушает.

Нотки печали особенно усиливаются потому, что если весь этот процесс появления излучения Хокинга действительно повествует о частицах в чистом квантовом состоянии, то ЧД, во-первых, не может излучать без издевательства над термодинамикой, а во-вторых, если и может, то тогда за поверхностью горизонта событий должны образоваться потоки частиц чрезвычайно высоких энергий, разрушающие любое попадающее внутрь тело. Как мы уже много раз говорили, во втором варианте на заклание вместо термодинамики надо отдать либо общую теорию относительности, либо квантовую механику, хотя это неприятно и противоречит очевидным успехам этих направлений в последние десятилетия.

Спохватившийся Стивен Хокинг решил загнать джинна излучения имени себя обратно в бутылку, предположив, что огненной стены нет, потому что горизонт событий не ловит ничто навечно, а потому и особой нужды в нагнетании обстановки с излучением нет.

А вот Сабина Хоссенфельдер показывает нам, что излучение Хокинга вполне может рождаться и не в чистом состоянии. Такое излучение, считает исследовательница, образуется не благодаря появлению пар квантово запутанных частиц, а благодаря появлению... двух пар запутанных частиц. Внешне различий нет: излучение Хокинга для стороннего наблюдателя будет в любом случае (что удержит на плаву термодинамику). Но — и это ключевой момент — вместо чистого состоянии у частиц, которым излучение обязано своим существованием, будет смешанное, то есть такое, в котором не задан полный набор независимых физических величин, определяющих состояние системы, а есть лишь вероятности нахождения системы в различных квантовых состояниях. Раз чистое квантовое состояние не возникает, то его нельзя и разрушить, а именно из его гипотетического разрушения и вытекает огненностенный парадокс.

Каково состояние квантово сцепленных частиц — чистое или смешанное?

Как далее показывает г-жа Хоссенфельдер, между частицами излучения Хокинга, испущенного, скажем, 200 млн лет назад, и сегодня никакой запутанности нет, что подрывает возможность того, что частицы излучения являют собой случай чистого квантового состояния. При отсутствии квантовой запутанности противоречия между классическим и квантовым описаниями событий у горизонта ЧД сглаживаются, а огненная стена исчезает (подробности о роли запутанности в строительстве стены см. здесь). Итак, все довольны: три потенциально ущербные группы физических теорий целы, традиционные чёрные дыры — тоже. Хокинговское излучение не находится в чистом квантовом состоянии, огненной стены нет, парадоксов нет. Но что же с самим Стивеном Хокингом и нанесённым им скоропалительным ударом по горизонту событий, который он «переделал» из вечного в кажущийся, видимый, со временем обречённый на исчезновение?

Надо сказать, что существует множество других моментов, которые давят на физиков, заставляя их дрейфовать в сторону идеи о невечном, кажущемся характере горизонта событий чёрных дыр. Поэтому Сабина Хоссенфельдер и замечает, что является сторонником подобных идей — но её тезис о кажущемся характере горизонта событий ЧД был выдвинут четыре года назад (в соавторстве с Ли Смолиным). Поэтому она заявляет: «"Работа" Хокинга в действительности — лишь запись его выступления прошлого года, резюме его мыслей по поводу огненной стены чёрных дыр. И ни одну из этих мыслей я не нахожу ни замечательной, ни выдающейся. Будь его работа выложена кем-то другим, её никто не заметил бы».

Хотя огненная стена падающему в чёрную дыру не грозит, угрозы спагеттификации с летальным исходом тоже никто не отменял.

В общем, ничего нового г-н Хокинг не сказал, считает г-жа Хоссенфельдер. А вот мы не были бы столь категоричны: резкость её реакции во многом обусловлена не столько тем, что в работе Стивена Хокинга «нет ничего нового» (на arXiv постоянно выкладываются чисто обзорные работы, да и г-н Хокинг не претендует здесь на особую новизну), сколько тем, что его тезисы получили мощное освещение в СМИ, в то время как опубликованная в январе работа самой Сабины прессой не замечена вовсе. Впрочем, так бывает: мало кто из учёных способен популярно изложить свои результаты, и мало кто из «неучёных» (включая даже физика из другой области) может быстро понять эти результаты самостоятельно, и всё это вряд ли вина одной лишь «раскрученности» Стивена Хокинга.

Отвлекаясь от понятной с эмоциональной точки зрения оценки «ни одну из этих мыслей я не нахожу ни замечательной, ни выдающейся», резюмируем: парадокс «огненной стены» действительно решён без уничтожения горизонта событий, но его переделки в «кажущийся» всё равно следует ожидать даже вне связи с этим конкретным парадоксом. Вот только проверить истинную природу горизонта при современном уровне наших возможностей пока нельзя: ЧД далеко, а жизнь человеческая коротка, поэтому без дальнейшего продвижения в физике чёрных дыр ни подтвердить, ни опровергнуть «вечность» горизонта событий не получится...

Подготовлено по материалам различных источников.
donmigel_62: (кот - учёный)

PandaX - самый глубокий эксперимент, направленный на обнаружение частиц темной материи

Емкость для жидкого ксенона


На глубине 2004 метров ниже уровня моря под толщей гор, находящихся в провинции Сычуань, Китай, команда ученых и инженеров начинают вводить в строй научное оборудование, целью работы которого является непосредственное обнаружение частиц самой загадочной материи во всей Вселенной, частиц темной материи. Спустя непродолжительное время датчики эксперимента PandaX (Particle and Astrophysical Xenon) начнут собирать огромные массивы научной информации в которой ученые будут искать доказательства существования неуловимых частиц, которые являются основой темной материи, на долю которой приходится более 84 процентов от все материи Вселенной.


В свое время ученые-физики выдвинули гипотезу о существовании темной материи для объяснения феномена недостающей массы Вселенной. Этот феномен проявляется в том, что галактики производят более сильные гравитационные силы, нежели можно объяснить с учетом массы их обычной видимой материи. Текущая теория о темной материи заключается в том, что темная материя состоит из массивных частиц, слабо взаимодействующих с обычной материей, так называемых WIMP-частиц (weakly interacting massive particles), которые взаимодействуют с нормальной материей только через силы гравитации и силы слабых взаимодействий, фундаментальных сил, действующих на очень маленьких расстояниях и ответственных за процессы ядерного распада.

Датчик PandaX


Если WIMP-частица сталкивается с ядром атома обычного вещества, то в теории она может вступить с ним во взаимодействие, которое станет причиной излучения фотонов света и потока других частиц, факт наличия которых может послужить доказательством факту столкновения. Но, к сожалению, такие случаи весьма редки, и на имеющихся в настоящее время датчиках регистрируется не больше трех-четырех подобных событий в год.

Выбор места проведения эксперимента PandaX далеко не случаен. Область, где проводятся эксперименты по прямому обнаружению WIMP-частиц, должна быть хорошо защищена от космического излучения и источников других частиц, которые ошибочно могут быть приняты за WIMP-частицы. Новая подземная лаборатория в Китае является самой глубокой лабораторией в мире. Толща горных пород, которые окружают помещение лаборатории, надежно защищает датчики и оборудование не только от космических лучей, но и от других источников излучения на поверхности Земли. Кроме этого, породы, окружающие лабораторию, являются одной из разновидностей мрамора, в составе которого практически отсутствуют радиоактивные элементы, способные стать источником ложных сигналов.

Следует заметить, что эксперимент PandaX является еще одним из нескольких подобных экспериментов, направленных на поиски частиц темной материи, которые работают уже сейчас или которые планируется начать в самое ближайшее время. Ключевым элементом установки эксперимента PandaX является емкость, заполненная ксеноном, охлажденным до жидкого состояния. В настоящее время объем этой емкости способен вместить 1 тонну жидкого ксенона, но для проведения второй фазы эксперимента объем емкости будет увеличен и количество ксенона составит 2.4 тонны.

Оборудование эксперимента PandaX


Если WIMP-частица столкнется с ядром атома ксенона в пределах емкости установки PandaX, это приведет к эмиссии фотонов света, которые будут обнаружены при помощи высокочувствительных датчиков-фотоумножителей. Кроме этого, столкновение станет источником некоторого количества свободных электронов, которые пройдут через жидкий ксенон с определенной скоростью. Сравнивая сигналы от детекторов фотонов и электронов, ученые смогут точно выяснить точку пространства, в которой произошло столкновение, время столкновения и некоторые другие параметры. Поскольку материал стенок емкости сам по себе испускает радиоактивные частицы, то ученые будут принимать в расчет только те события, которые произошли в центральной части резервуара с жидким ксеноном.

Следует заметить, что заявленный объем жидкого ксенона делает эксперимент PandaX не только рекордсменом по глубине проведения, но и по объему рабочей жидкости тоже. Сбор первых данных начнется сразу же по завершению монтажа и тестирования оборудования, а появления первых результатов эксперимента следует ожидать ближе к концу этого года. Если все оборудование и идея, заложенная в эксперименте, будут работать должным образом, то у неуловимых WIMP- частиц останется меньше места, чтобы скрываться от любопытного взгляда ученых.

donmigel_62: (кот - учёный)

Найдены «предки» ранних компактных эллиптических галактик

Астрономы, использовавшие наземные и космические телескопы, создали общую картину эволюции загадочных галактик-тяжеловесов ранней Вселенной — исключительно массивных эллиптических структур, сам факт существования которых долгое время приводил учёных в некоторое недоумение.

Хотя Вселенная образовалась 13,8 млрд лет назад, уже через три миллиарда лет в ней были компактные галактики эллиптической формы с огромным количеством звёзд и большой видимой массой.

«Всё это было загадкой на протяжении многих лет, потому что всего через три миллиарда лет после Большого взрыва мы могли видеть половину самых массивных галактик уже закончившими звездообразование», — говорит Суне Тофт (Sune Toft) из Института Нильса Бора (Дания), ведущий автор новой работы.

Слева — Млечный Путь, справа — компактная массивная «мёртвая» галактика, плотность звёзд в которой в десятки раз выше. Светил в той и другой примерно одинаково, но вот размеры у них разные, да и возраст различается на десяток миллиардов лет. (Иллюстрация NASA, ESA, S. Toft, A. Feild.)

Поясним: традиционный взгляд на эволюцию галактик предполагает, что после возникновения они должны были расти постепенно, как наш Млечный Путь, периодически сталкиваясь и набирая габариты и массу. Компактные эллиптические галактики, ставшие массивными уже в эпоху, когда Млечный Путь и прочие его спиральные коллеги только формировались, явно выбивались из этого ряда, и никто не знал, почему. Что ещё более странно, звёзды там были намного ближе друг к другу, чем в эллиптических галактиках сегодняшней Вселенной, то есть расположены в 10–100 раз плотнее. Такие цифры характерны для шаровых скоплений, а не для галактик.


Проведя наблюдения самых ранних из известных галактик, в течение 1–2 млрд лет «предшествовавших» древним компактным эллиптическим «тяжеловесам», г-н Тофт сравнил затем между собой характеристики этих двух групп.

Ранние галактики были богаты пылью и газом и очень быстро образовывали звёзды: по расчётам, вспышка звездообразования в них, исходя из наблюдаемых запасов газа, не могла продолжаться более 40 млн лет.

Между тем черты более поздних эллиптических галактик оказались удивительно схожи с этими ранними быстро развивающимися объектами — за вычетом того, что звездообразование в них уже не шло, но масса и размеры были много больше.

Что особенно важно, быстро развивающиеся галактики первых двух миллиардов лет после Большого взрыва имели толстую «оболочку» из пыли, которая позволяет наблюдать их в ИК-диапазоне и препятствует утеканию газа, разогреваемого звездообразованием. В результате плотность газа там резко растёт, и звёзды создаются очень быстро в очень небольших областях, в то время как в других галактиках, вроде нашей, газ «выталкивается» звездообразованием на периферию и в гало, где не может участвовать в рождении светил.

Однако затем, всего через несколько десятков миллионов лет, галактики с пылевым одеялом уже не способны к производству новых звёзд, так как газ в них истощился. И они не могут притянуть ранее выброшенные газовые облака из галактического гало — просто потому, что в своё время ничего туда не выбрасывали.

Эволюция эллиптических галактик от ранней Вселенной до наших дней.

По мнению авторов работы, столь разный ход галактической эволюции привёл к наблюдаемому сегодня, 10 млрд лет спустя, разнообразию галактик во Вселенной, где спиральные, всё ещё генерирующие новые звёзды структуры соседствуют с уже миллиарды лет «мёртвыми» эллиптическими галактиками, основным типом населения которых являются древние долгоживущие красные карлики.

Отчёт об исследовании опубликован в Astrophysical Journal, а его препринт доступен на сайте arXiv.

Подготовлено по материалам Института Нильса Бора.
donmigel_62: (кот - учёный)

Стивен Хокинг сомневается в природе чёрных дыр

В своей новой работе известный физик заявляет о необходимости покончить с концепцией «горизонта событий», ключевым элементом в наших сегодняшних представлениях о чёрных дырах. Именно попав за его пределы, ничто, включая свет, не может покинуть чёрную дыру (ЧД), что в конечном счёте порождает все эти парадоксы вроде потери информации (чего, казалось бы, не может быть) и прочих «огненных стен».

Вместо него г-н Хокинг предлагает концепцию «кажущегося горизонта» — мягко-беззубую в физическом смысле замену устрашающего чёрнодырного железного занавеса, которым, по сути, был «горизонт событий». «Кажущийся горизонт» только временно удерживает материю-энергию в ЧД, а затем всё же отпускает их, хотя и в слегка подправленном виде.

Если наши представления о гравитации и квантовой механике хоть сколько-нибудь полны, то чёрная дыра, возможно, вовсе не точка «полного невозврата». (Иллюстрация Victor Habbick Visions / Spl / Getty.)

«В классической теории из чёрной дыры нет спасения, — объясняет г-н Хокинг, — [а вот квантовая теория] позволяет энергии и информации покинуть ЧД». Разумеется, поскольку качественного объединения квантовой теории с гравитацией не наблюдается, «правильная манера обращения» с этим вопросом, замечает физик, пока «остаётся неизвестной».



Итак, к сути. Вы уже знаете, что Ахмед Альмхеири (Ahmed Almheiri), Джо Полчински (Joe Polchinski) и ряд их коллег пару лет назад задались вопросом, что же на самом деле случится с объектом (не важно, частицей или человеком), если он провалится за горизонт событий ЧД.


Не будем вновь утомлять вас подробностями (а впрочем, если желаете, то вот), но общие итоги были несколько неожиданными: если учесть законы квантовой механики, определяющей поведение частиц на малых масштабах, то ситуация с традиционным сравнительно безопасным падением условного объекта за горизонт событий резко меняется. А именно: граница горизонта событий должна быть насыщена энергией до такой степени, что входящее тело будет уничтожено.

Всё это выглядело весьма тревожно. Получалось, что, соблюдая законы квантовой механики, ЧД одновременно плевать хотела на общую теорию относительности — то есть проявляла редкостное неуважение к прямым предкам. По ОТО, ситуация для падающего в ЧД и просто для плавающего в межгалактическом пространстве тела субъективно не должна различаться, и прохождение через горизонт событий в ОТО-стиле (по крайней мере для больших чёрных дыр) должно являть собой непримечательное для условного астронавта событие.

Как вы уже догадались, заставь мы в умственном эксперименте ЧД уважать Эйнштейна — и она немедленно грубо надругалась бы над квантовой механикой, вплоть до, например, подрыва принципа унитарности или даже возникновения квантовой запутанности одного объекта с парой других одновременно (и кто его знает, что тут хуже).

Стивен Хокинг считает, что есть третий путь. Давайте не будем трогать квантовую механику, да и ОТО уважим: просто предположим, что у ЧД нет горизонта событий, на котором будет уничтожен любой входящий объект. Квантовые эффекты, считает он, вызывают в окрестностях чёрной дыры столь мощные флуктуации, что такой резкой границы, поверхности, «после которой — всё», просто не существует.

Такое место он называет «кажущимся горизонтом», поверхностью, вдоль которой световые лучи, пытающиеся вырваться наружу из чёрной дыры, будут «подвешены»: они, словно кэрролловская Алиса, будут бегать со скоростью в 300 000 км/с по барабану, вращающемуся так быстро, что лучи, несмотря на сверхстремительность «бега», едва удержатся на месте. Ситуация выглядит идентичной обычному горизонту, но является временной, хотя длительность периода удержания материи кажущимся горизонтом г-н Хокинг не обозначает.

Горизонт же событий в строгом смысле этого слова, то есть место, из которого свет не сможет вырваться никогда, Стивен Хокинг исключает. Из этого, естественно, следуют вполне зубодробительные выводы. «Отсутствие горизонтов событий означает, что нет такой штуки, как чёрная дыра, — в смысле наличия таких режимов, когда свет не может вырваться из неё», — уверен учёный. В связи с этим он предлагает выдать ЧД новое определение — «метастабильные связанные состояния гравитационного поля».

Что тут хорошего? Ну, огненную стену мы всё-таки разрушили, что уже плюс. Опять же, как замечает физик, это пока единственное решение парадокса «огненной стены», которое совместимо с CPT-инвариантностью, фундаментальной симметрией физических законов при преобразованиях, включающих одновременную инверсию заряда, чётности и времени.

Но у этой медали «За победу над горизонтом событий» есть и другая сторона. Сами посудите: если кажущийся горизонт ЧД по каким-то причинам сократится до размера столь малого, что эффекты гравитации (макромир) и квантовой механики (микромир) будут работать одновременно, то и «кажущийся горизонт» исчезнет, а всё то, что ЧД за свою долгую жизнь проглотила, будет явлено миру. Нет, конечно, не совсем в первоначальном виде (в ряде случаев всё будет деформировано до полной неузнаваемости), но и такое представление скрытых миллиарды лет объектов кажется весьма странным событием.

Более того, если г-н Хокинг прав, то внутри ЧД может не быть никакой сингулярности. Опять же в этом есть свой плюс — благо сингулярность физически не слишком внятное явление. Попадающая же внутрь материя будет двигаться к центру ЧД, но никогда не дойдёт до него и не будет полностью уничтожена. Следовательно, и информация, содержащаяся в такой материи, не уничтожится, а лишь окажется искажена до такой степени, что после того, как появится в окружающем мире при помощи, скажем, излучения Хокинга, будет радикально отличаться от изначальной, и стороннему наблюдателю станет почти невозможно восстановить, что же некогда упало в ЧД.

Сам Стивен Хокинг сравнивает такую задачу с предсказанием погоды наперёд: в теории возможно, на практике же слишком сложно, чтобы сделать это сколько-нибудь точно более чем на несколько дней.

Впрочем, для нас — существ, продолжительность жизни которых в сравнении с возрастом ЧД исчезающе мала, — ситуация внешне почти не изменится: ожидать исчезновения кажущегося горизонта событий за время человеческой жизни не стоит. (Иллюстрация Shutterstock.)

Заметим, что Джо Полчински, один из авторов изначального парадокса «огненной стены», скептически настроен по отношению к идеям г-на Хокинга. Он не очень-то верит в саму возможность существования ЧД без «вечного» горизонта событий. А бывший студент автора новой теории Рафаэль Боуссо (Raphael Bousso) из Калифорнийского университета в Беркли (США) говорит, что нынешняя работа мэтра отражает степень неприятия научным сообществом самой идеи огненной стены: чтобы исключить возможность её существования, люди готовы на многое.

Правда, он считает, что решение Стивена Хокинга может стать лекарством похуже самой болезни (огненной стены). «Идея о том, что нет такой точки, из которой вы [гарантированно] не сможете покинуть чёрную дыру, в некоторых смыслах даже ещё более радикальна и проблематична, чем существование огненных стен», — считает г-н Боуссо.

С препринтом рассмотренной работы можно ознакомиться здесь.

Подготовлено по материалам Nature News. Изображение на заставке принадлежит Shutterstock (1 и 2).
donmigel_62: (кот - учёный)

Космический телескоп Chandra помог найти одну из самых мощных черных дыр



Используя Космическую рентгеновскую обсерваторию «Чандра» (Chandra X-ray Observatory) и множество других телескопов, астрономы сумели найти одну из самых мощных черных дыр из когда-либо обнаруженных – гравитационно-интенсивную область космоса, расположенную почти в четырех миллиардах световых лет от Земли и препятствующую формированию триллионов звезд.

Эта черная дыра, находящаяся в скоплении галактик RX J1532.9+3021 (или RX J1532), создала гигантские структуры в горячем газе, который его окружает, сообщили исследователи из американского космического агентства. Изображение, выпущенное НАСА, показывает собранные вместе рентгеновские данные телескопа Chandra, представленные фиолетовыми оттенками, и оптические данные, полученные от космического телескопа Хаббл (Hubble), где отображаются галактики желтым цветом.

RX J1532 очень яркая в рентгеновских лучах, что намекает на её массивность – на самом деле, исследователи полагают, что масса кластера примерно в квадрильон раз больше массы Солнца. В центре скопления большая эллиптическая галактика – что-то вроде дома для сверхмассивной черной дыры, но количество горячего газа в этой области озадачило исследователей.

«Горячий газ, светящийся в рентгеновских лучах, должен остыть, в то время как плотный газа в центре скопления должен остывать еще быстрее», сказали представители НАСА. «Давление в этот прохладном газе должно упасть, в результате чего газ расширится в сторону галактики, образуя триллионы звезд на этом пути. Тем не менее, астрономы не нашли доказательств взрыва звезд, образующихся в центре этого кластера».


Согласно изображениям, полученным от Chandra и Very Large Array (VLA), причина того, что большое количество звезд не формируются в этой группе – наличие двух больших полостей в горячем газе по обе стороны от центральной галактики, расположившихся на одной прямой с джетами. Наличие черной дыры между ними предполагает, что сверхзвуковые джеты, генерируемые этой самой черной дырой, «просверливают» горячий газ и толкают его в сторону, формируя эти полости.

«Ударные фронты, вызванные расширением полостей, и выделение энергии звуковых волн служат источником тепла, который не позволяет большей части газа охлаждаться и формировать новые звезды», сказали ученые из НАСА. «Каждая полость простилается примерно на 100 тысяч световых лет, что почти равно ширине галактики Млечный Путь. Мощность, необходимая для их создания,  одна из крупнейших среди известных в скоплениях галактик».

В самом деле, требуется мощность, почти в 10 раз больше мощности, необходимой для формирования хорошо известных полостей в Персее, объяснили астрономы. В то время как вещество, падая в черную дыру, скорее всего генерирует энергию, необходимую для питания этих джетов, исследователи не обнаружили ни одного рентгеновского излучения из этого материала.

Это явление объяснимо, если черная дыра на самом деле ультрамассивная, а не сверхмассивная, – это означает, что она имеет массу примерно в 10 млрд. раз больше, чем наше Солнце. Этот тип черной дыры, вероятно, будет в состоянии создать мощные джеты без необходимости потреблять большое количество массы, что ограничивает излучение, возникающее при падении в нее материала.

Альтернативное объяснение этому – черная дыра всего в один миллиард раз больше, чем Солнце, но крутится так быстро, что это может привести к генерации более мощных джетов, чем у более медленно вращающихся – без дополнительного потребления материи. Не смотря на то, в обоих объяснениях, черная дыра чрезвычайно массивная.

http://www.redorbit.com/news/space/1113054204/extreme-black-hole-imaged-by-chandra-and-hubble-012414/

donmigel_62: (кот - учёный)

Когда рассуждения о мультивселенной превратились в фэнтези?

Американский физик попытался доказать, что диковинные спекулятивные построения имеют смысл и даже необходимы.
Несколько лет назад философ Дэвид Халл написал книгу под названием «Наука как процесс» (Science as a Process), в которой утверждал, что развитие науки вполне описывается теорией эволюции. Учёные, одарённые воображением, производят идеи и выдвигают гипотезы, создавая и поддерживая эквивалент естественной изменчивости биологической популяции. Другие учёные поверяют идеи логикой и практикой. Изменчивость и отбор — двигатели и науки, и эволюции.

Однако эта схема работает должным образом только в том случае, когда в науку приходят люди с самыми разными индивидуальными особенностями и когда в науке существует множество разнообразных специализаций. Развитие науки невозможно, если ею занимаются исключительно фантазёры, умеющие лишь рассуждать на тему «а что если». Точно так же смертельно для науки засилье строгих бесчувственных скептиков, которые верят только самым убедительным доказательствам. Первые генерируют идеи, вторые не позволяют науке превратиться в фэнтези.
Рассуждения о тайнах Вселенной принято иллюстрировать красивыми картинками далёкого космоса, потому что он тоже выглядит нереальным. (Изображение NASA / JPL-Caltech / S. Stolovy, Spitzer Science Center, Caltech.)

«Фэнтези»! Вот то слово, которое произносят многие физики, сталкиваясь с некоторыми идеями, популярными в современной космологии. Как пишет в журнале New Scientist американский физик и популяризатор науки Марк Бьюкенен, «фэнтезийная траектория» начиналась довольно плавно. Просто физик Алан Гут попытался однажды объяснить странности видимой Вселенной (например, чрезвычайно однородное распределение вещества) коротким периодом быстрого расширения (инфляцией): за 10–30 с Вселенная на заре своего существования якобы увеличилась в 1078 раз.



С тех пор эта спекулятивная воронка расширилась настолько, что уже никого не удивляют рассуждения о бесконечности параллельных вселенных и мультивселенной. В этой последней есть всё, что только можно себе вообразить, в том числе бесконечное количество людей, абсолютно идентичных вам, переживающих бесконечное количество вариантов вашей жизни.


Можно ли назвать это наукой? Или же инфляционная космология породила нечто сродни религии? В книге «Наша математическая вселенная» (Our Mathematical Universe) физик Макс Тегмарк из Массачусетского технологического института (США) выступает со страстной проповедью в защиту гипотезы о параллельных вселенных.

Г-н Бьюкенен отмечает, что новая работа — прежде всего превосходный справочник по недавним событиям в мире квантовой космологии и текущим дебатам относительно теорий параллельных вселенных. Автор очень старается структурировать информацию и предлагает своего рода таксономический обзор «зоопарка» параллельных вселенных. Читатель понимает, что термины «параллельная вселенная» и «мультивселенная» в устах разных учёных могут обладать самыми неожиданными значениями, и г-н Тегмарк выбирает те интерпретации, которые, по его мнению, основаны на данных наблюдений и законах физики.

Первый уровень мультивселенных, согласно его классификации, связан с идеей, принятой ныне многими космологами. Быстрая ранняя инфляция, как пишет автор, должна была привести к возникновению таких областей пространства, свет от которых до нас ещё не дошёл. Хотя мы не можем наблюдать эти «вселенные», нельзя отрицать их существование.

Гипотезы о мультивселенных второго уровня опираются на более смелую идею, которую высказал Александр Виленкин. Могут существовать такие области пространства, которые навсегда останутся недоступными для нашего наблюдения, ибо нынешнее расширение Вселенной уносит их от нас с более высокой скоростью, чем к нам летит их излучение.


На этом гипотезы, которые можно назвать космологическими, заканчиваются. Мультивселенные третьего уровня — это просто удобный язык для разговора о математике квантовой теории в её многомировой интерпретации, предложенной в 1950-х Хью Эвереттом. Эта интерпретация описывает все физические процессы как часть продолжающегося, бесконечного перехода Вселенной во многие другие вселенные. Только надо помнить, что есть и другие интерпретации, столь же успешно объясняющие данные наблюдений, но не признающие тезиса о параллельных вселенных.

Мультивселенные четвёртого уровня тоже не имеют никакого отношения к космологии. Г-н Тегмарк утверждает, что реальность не просто описывается математикой (вопреки представлениям физиков), но сама по себе является математической. Более того, он полагает, что математика нашей Вселенной — лишь одна из бесконечного числа математических структур. И если данная математическая структура — вселенная, то все остальные математические структуры тоже должны существовать физически как параллельные вселенные.

Разумеется, это всего лишь слова, но история науки учит, что, если нам что-то кажется невероятным, ещё не факт, что этого действительно нет. Вся история человечества — это история расширения границ известного нам мироздания. Древние племена не имели никакого понятия о других народах, странах, континентах. Почему бы не предположить, что и мы с вами ничего не знаем о других вселенных?

Вопрос в том, есть ли научный смысл у размножения вселенных. Если мультивселенные первого уровня ещё имеют какое-то отношение к физике и наблюдаемым данным, то остальные сугубо спекулятивны. Но г-на Тегмарка радует сам факт того, что инфляция, как он пишет, «позволяет всякий раз предсказывать нечто ещё более радикальное, чем уже предсказанное».

Г-н Бьюкенен замечает, что перед нами типичный пример учёного, для которого творчество важнее производства сугубо научного знания. Для него возможность гипотезы порождать новые идеи служит её достаточной верификацией. Истинны они или нет, это его не интересует.



Однако нельзя забывать и о том, что Макс Тегмарк сделал себе имя прежде всего как строгий эмпирик, разработав методы анализа данных крупномасштабных астрономических проектов по измерению флуктуаций реликтового излучения. Вероятно, заключает г-н Бьюкенен, в лице этого человека соединились два типа учёных, без которых невозможно дальнейшее развития науки.

Подготовлено по материалам NewScientist.
donmigel_62: (кот - учёный)

Ветер из тёмной материи, похоже, всё-таки дует на Землю

Тёмная материя по-прежнему остаётся главным претендентом на решение проблем астрофизики и космологии — и по-прежнему в экспериментах нет достоверных свидетельств обнаружения её частиц. Или мы слишком требовательны?
Как нет, воскликнут иные, ведь DAMA аж с 2000 года заявляет: вимпы (частицы тёмной материи) есть, и свидетельства их существования «тянут» сегодня на 9σ (девять сигм), что куда убедительнее открытия бозона Хиггса. Увы, данные более «свежих» детекторов никаких 9σ не показывают, отчего господа физики за пределами коллаборации DAMA привычно ссылаются на некие невидимые миру источники погрешностей, которые пока не учтены «дамовцами». Что интересно, при этом эксперимент демонстрирует сезонные колебания числа и энергии в следах вимпов, а другие эксперименты ничего такого не показывают. К тому же за всё время дискуссии никто из DAMA-оппонентов так и не смог чётко изложить, какой именно физический механизм мог бы обеспечивать ложные срабатывания.

Когда скорость вращения Солнца вокруг центра Галактики складывается со скоростью вращения Земли вокруг него же (220 + 30 км/с), вимп-«ветер» для нас достигает максимума, в начале зимы (220 - 30 км/с) — минимума. (Илл. Christopher Savage et al.)

Типичная, словом, для ТМ-историй степень запутанности: то ли «дамовцы» чего-то не учли, то ли оппоненты любят всё списывать на ошибки, источник которых сами даже примерно представить не могут.

Теперь эта эпопея может пополниться некоей дозой оживляжа: проводимый в США эксперимент CoGeNT тоже наблюдает сезонные изменения в количестве регистрируемых его детекторами событий.



Идея DAMA в основе проста: изолированный детектор считает, как изменяется количество всех событий, им регистрируемых. Поскольку Солнечная система движется относительно предположительно существующего гало из тёмной материи, окружающего Млечный Путь, а Земля ещё и круги вокруг Солнца нарезает, то соответствующие скорости (220 км/с и 30 км/с) северным летом складываются, достигая максимума в районе 2 июня (или конца мая, по другой серии расчётов). Северной же зимой они, напротив, падают до минимума. Всё это не имело бы особого значения, когда б ТМ-гало вращалось вместе с остальной Галактикой, вот только теория предсказывает, что оно, по идее, вращаться не должно вовсе.

Разумеется, это означает, что скорость, на которой вимпы сталкиваются с земной материей в детекторе, должна-таки колебаться, что отражается на энергиях и частоте регистрации таких столкновений в зависимости от времени года.

Хуан Койяр (Juan Collar) из Чикагского университета (США) и руководимая им коллаборация CoGeNT взялись выяснить, насколько подобные колебания могут быть подтверждены их детектором, работающим не на 250 кг йодида натрия, как DAMA, а на 100 г германия. После ряда наблюдений 2011 года тогда ещё скептически настроенный г-н Койяр заявил, что, к его удивлению, некоторые следы сезонных колебаний в регистрации событий всё же имеются. И инициировал ещё более тщательную проверку.

Кроме прочего, его коллаборация присмотрелась к энергии регистрируемых событий: в теории вимпы должны давать энергию ниже 2 кэВ, а сами события — происходить в толще материала детектора. Оказалось, что регистрируемые CoGeNT столкновения носят именно такой характер, то есть почти идеально подходят на роль вимпов.

Какова статистическая значимость этих выводов? Хуан Койяр скромен: 2,2σ — далеко не пять сигм, после которых дискуссию можно было бы закрыть. То есть вероятность ошибки в подтверждениях данных DAMA всё ещё около 2%, что для физиков много. В то же время, учитывая данные DAMA и эксперимента CRESST, который проводится в Италии, получается, что вероятность сезонных колебаний столкновений с вимпами становится довольно высокой.

Правда, тут есть нюанс: массы вимпов и сила их взаимодействия с обычной материей во всех трёх экспериментах выглядят не так уж и одинаково — а если честно, то и сильно по-разному. Но здесь, полагает г-н Койяр, нужно проявить осторожность. Да, если вимпы движутся внутри галактического гало примерно случайно, то и массы и сила взаимодействия у всех детекторов планеты должны быть сходными.

Однако ряд недавних работ заставляет предполагать, что часть вимпов ведёт себя не так, как другие: в частности, они способны образовывать что-то вроде «потоков», текущих в определённом направлении. В этом случае разные результаты трёх экспериментов становятся вполне объяснимыми, замечает учёный.

Ну а далее идут типичные для данной области реверансы и заклинания об осторожности в интерпретации: это «не свидетельство» ТМ, а лишь «накладывание ограничений» на возможную сущность тёмной материи. Да, с 2,2σ прыгать на одной ноге и кричать «Эврика!» действительно рано, но когда г-н Койяр опять заявляет, что сезонные колебания в зарегистрированных его группой сигналах могут объясняться неким «пока неизвестным источником систематических ошибок», так и хочется спросить, что же это за ошибки такие, которые работают и с германием, и с йодидом натрия, — а главное, никем из физиков, людей, прямо скажем, не лишённых воображения, пока даже примерно не выявлены.

Вдогонку напомним: CDMS, который нашёл-таки «свои» следы тёмной материи в Судане на кремниевых детекторах, никаких следов ежегодных колебаний на германиевых не показал. Неужели регистрация германиевыми дисками вимпов — или пресловутая «неизвестная систематическая ошибка» — может как-то зависеть ещё и от географического расположения подобных детекторов?

Детектор CoGeNT скромен размерами, но, по идее, более чувствителен к маломассивным вимпам. (Фото Pacific Northwest National Laboratory.)

Как будто нарочно, пара ксеноновых экспериментов, имеющих аналогичные цели, не видит вообще никаких вимпов, отчего их ныне калибруют и готовят к сезону-2014. Впрочем, Хуан Койяр и Ко не дремлют и строят пусть и маленький, зато собственный ксеноновый детектор, надеясь получить от него результаты уже через несколько недель, — то есть ждать осталось недолго.

Спекулятивно, учёный также полагает, что если вышеупомянутые «потоки» и течения вимпов всё же существуют и частично проходят через Солнечную систему, то космический телескоп Gaia может заметить их косвенные последствия, поскольку тёмная материя должна увлекать часть звёзд Галактики в том же направлении — то есть к земному наблюдателю. Что же, подождем ещё и регистрации звёздных течений?

Препринт отчёта об исследовании можно полистать здесь.

Подготовлено по материалам Physicsworld.Com
donmigel_62: (кот - учёный)
Оригинал взят у [livejournal.com profile] universe_viewer в В галактике M82 вспыхнула яркая сверхновая
Источники - http://www.universetoday.com/108386/bright-new-supernova-blows-up-in-nearby-m82-the-cigar-galaxy/ ,
http://kosmos-x.net.ru/news/v_galaktike_m82_obnaruzhena_novaja_sverkhnovaja/2014-01-22-2819



Сверхновая PSN J09554214+6940260. Фото: Леонид Еленин


В галактике M82 (галактика Сигара) была обнаружена сверхновая. Об этом информирует Стас Короткий, российский астроном-любитель, популяризатор наукоёмких наблюдений среди любителей астрономии.

"В известной и близкой галактике М82 из созвездия Б.Медведицы сегодня ночью была открыта яркая сверхновая звезда PSN J09554214+6940260 (временное обозначение)! Ее блеск сейчас составляет уже около +11 зв. вел.! Она доступна для наблюдений даже со скромным телескопом в городских условиях", - пишет Стас в социальной сети "Вконтакте".

Открыл сверхновую доктор Стивен Дж. Фосси из обсерватории в Лондонском университете. Минувшей ночью был проведен спектральный анализ сверхновой, результаты которого позволили сказать, что это сверхновая типа Ia. По предварительным оценкам скорость её расширения составляет 20 тысяч километров в секунду.
Read more... )
donmigel_62: (кот - учёный)

Получено первое изображение "космической паутины", связывающей воедино все во Вселенной

Космическая паутина


Ученые-астрономы из Калифорнийского университета в Санта-Круз, используя 10-метровый телескоп из состава обсерватории W.M.Keck Observatory на Гавайях, получили первые снимки "космической паутины", сети из материи, соединяющей все объекты во Вселенной. На представленном ниже изображении можно увидеть голубую туманность, размерами 2 миллиона световых лет, которая окружает чрезвычайно яркий квазар UM287. Высокоэнергетическое излучение квазара заставляет светиться материю туманности в определенном диапазоне длин волн, что позволило ученым детально изучить структуру и определить некоторые свойства нитей космической паутины.


Согласно рассказу Себастиано Канталупо (Sebastiano Cantalupo), одному из ведущих специалистов в данных исследованиях, космическая паутина, размером в 2 миллиона световых лет, "является исключительным астрономическим объектом. Она просто огромна, ее размеры минимум в два раза превышают размеры любой известной людям туманности, и она простирается далеко за пределы галактического окружения квазара UM287".

Полученное учеными изображение служит подтверждением теории "космической паутины", которая опутывает всю Вселенную, соединяя все космические объекты невидимыми нитями, состоящими на 84 процента из таинственной темной материи. Созданная учеными компьютерная модель, показанная на первом снимке, демонстрирует распределение материи нитей во Вселенной, а на вставке показана область космического пространства, размером в 10 световых лет, в центре которой находится квазар и на которой видно части нитей, состоящие из обычной и темной материи.

Туманность возле квазара UM287


Сделанные учеными снимки являются ключевым моментом в будущих поисках других экзотических космических объектов, известных под названием темных галактики. Согласно имеющейся теории, темные галактики это узлы космической паутины, относительно небольшие области пространства, где материя нитей паутины имеет чрезвычайно высокую плотность. На изображении, составленном по компьютерной модели, можно увидеть несколько таких темных галактик, некоторые из которых находятся в непосредственной близости от обычных галактик и туманностей. Часть материи темных галактик попадает в обычные галактики, но, как это ни парадоксально, большая часть материи темных галактик и нитей паутины таки и остается в рассеянном состоянии, не принимая участия в формировании туманностей и новых звезд.

Ученые уже планируют дальнейшие поиски нитей космической паутины, темных галактики и других экзотических космических объектов, имеющих отношение к "темной" стороне Вселенной. Не стоит сомневаться в том, что эти поиски, рано или поздно, дадут результаты, которые значительно расширят область знаний люде об строении Вселенной и о происходящих в ней процессах.

Компьютерная модель "паутины" на видео. 2009 год..



http://news.ucsc.edu/2014/01/cosmic-web.html
donmigel_62: (кот - учёный)
Оригинал взят у [livejournal.com profile] sergepolar в таблица заимствований



Только водород и гелий свои изначально.
Остальное заимствовано у космических лучей, звезд и сверхновых.
donmigel_62: (кот - учёный)

Перемычки приходят с возрастом

Перемычка, свойственная большинству спиральных галактик, — явление не преходящее, а приходящее, ранее отсутствовавшее почти во всех галактиках и лишь в последние пару миллиардов лет ставшее общей чертой двух третей «спиральников».

Том Мелвин (Tom Melvin) из Портсмутского университета (Великобритания) и его сотрудники на большом статистическом материале подтвердили, что перемычки появляются у спиральных галактик по мере роста их возраста и массы, то есть в грядущем они будут у всех галактик вроде нашей.

Спиральная галактика с перемычкой NGC 1300 в созвездии Эридан, отстоящая от нас на 61 млн световых лет (иллюстрация HST / NASA / ESA).

Спиральных галактик, как вы помните, довольно много, и примерно две трети из них, как и наш Млечный Путь, имеют перемычку — «полосу» ярких звёзд, выходящую из центра и пересекающую галактику посередине. Если в обычной спиральной галактике её ветви выходят непосредственно из ядра, то в «перемычечных» начинаются на концах перемычек.

По существующим гипотезам, перемычки являются очагами звездообразования, возникающими из-за орбитального резонанса, при пропускании сквозь себя газа из спиральных ветвей. При этом, по идее, они должны быть преходящи и со временем разрушаться, после чего исходная галактика превращается из спиральной с перемычкой обратно в обычную спиральную.


Используя данные волонтёрского интернет-проекта Galaxy Zoo, классифицирующего типы галактик по изображениям, которые получены в проекте Слоановского цифрового обзора неба, астрономы установили, что в целом история наблюдаемых спиральных галактик отклоняется от такого сценария.

Со взрослением галактик (z, красное смещение) частота появления у них
перемычек растёт. (Иллюстрация Tom Melvin et al.)

В самом деле, если для галактик, свет от которых шёл до наших телескопов 8 млрд лет, доля «перемычечных» среди спиральных была равна каким-то 11%, то уже 2,5 млрд лет тому назад она удвоилась, а за последующее до современности время выросла до 66%, то есть ещё утроилась. Чем вызвано столь активное появление перемычек со статистической точки зрения, понять довольно легко: чем массивнее наблюдавшаяся галактика, тем выше для неё вероятность обзавестись перемычкой. А поскольку с возрастом галактики часто сталкиваются, увеличивая свою массу, рост доли имеющих перемычку вроде бы не должен удивлять.
С другой стороны, появление перемычки оказалось для галактики не только признаком зрелости, но и до некоторой степени знаком снижения плодовитости: они «отключают» образование новых звёзд, отбирая для перемычки газ, из которого могли бы сформироваться новые звёзды в диске.

Всё это означает, что перемычка может быть не сколько переходным этапом в жизни зрелой спиральной галактики, сколько возрастным признаком, склонным к появлению во всё большем числе галактик этого типа.


Отчёт об исследовании вскоре появится в журнале Monthly Notices of the Royal Astronomical Society, а его препринт доступен на сайте arXiv.

Подготовлено по материалам Королевского астрономического общества.

donmigel_62: (кот - учёный)
"Эффект обзора"

Короткометражный фильм "Эффект обзора" посвящен феномену "эффекта обзора", о котором рассказывают пять астронавтов, испытавших его на себе. Фильм также содержит высказывания философов о роли этого явления в обществе, о его влиянии на наше отношение к природе.






donmigel_62: (кот - учёный)
Оригинал взят у [livejournal.com profile] kodusass в Вселенная способна разгонять частицы до таких энергий, которые нам пока недоступны.
Выдающимся результатом 2013 года стала первая регистрация нейтрино сверхвысоких энергий в нейтринном телескопе IceCube . Это огромная, с кубический километр, сеть светочувствительных датчиков, погруженных в толщу антарктического льда и наблюдающих за свечением от широкого ливня, порожденного частицей высокой энергии. Количество света, собранного датчиками, сообщает о выделившейся энергии, а точный момент срабатывания каждого из них позволяет восстановить картину распространения ливня частиц, а значит, и определить направление, с которого пришло нейтрино.
Рис. 5. Обложка журнала Science за 22ноября 2013года сизображением отклика, который оставило нейтрино с энергией 250ТэВ, зарегистрированное детектором IceCubeОбложка журнала Science за 22 ноября 2013 года с изображением отклика, который оставило нейтрино с энергией 250 ТэВ, зарегистрированное детектором IceCube. Изображение с сайта sciencemag.org

Read more... )

Profile

donmigel_62: (Default)
donmigel_62

March 2014

S M T W T F S
       1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 1819202122
23242526272829
3031     

Syndicate

RSS Atom

Page Summary

Style Credit

Expand Cut Tags

No cut tags