donmigel_62: (кот - учёный)
Оригинал взят у [livejournal.com profile] solar_front в 44 Гвт фотовольтаики поставят в этом году (мировое).


BNEF ожидает в 2014 установки 44,5 ГВт по всему миру.
28.02.2014: Экономическая служба информации Bloomberg New Energy Finance (BNEF) считает, что в течении текущего года установят 44,5 ГВт фотовольтаики. Это на 29,9 % больше по сравнению с 2013. В 2013 рост был 20,3 % и в 2012 - 4,4 %. Китай будет в 2014 будет самым большим в мире солнечным рынком и установит от 12 до 14 ГВт. Увеличение рынков в Японии и США частично компенсирует падение европейского рынка. Япония установит примерно 10,5 ГВт и США примерно 5,3 ГВт согласно BNEF в 2014. Ожидается, что именно производители поликремния и модулей из Азии получат максимальные прибыли.

Для справки: 44 ГВт - это более 10-ти крупных  атомных электростанций.
donmigel_62: (кот - учёный)

В 2013 году суммарная мощность, введённых в эксплуатацию солнечных установок в Китае достигла 12 гигаватт



В прошлом 2013 году в Китае были введены в эксплуатацию солнечные панели, суммарная мощность которых составила 12 гигаватт. Ни одна страна мира в течение года не устанавливала такое количество солнечных батарей. Более того, количество введённых в эксплуатацию в 2013 году солнечных панелей превышает количество панелей, установленных за всю историю Китая. Самое примечательное то, что в 2014 году Китай планирует ввести в эксплуатацию солнечные панели суммарной мощностью 14 гигаватт.


Для сравнения, Германия, которая являлась лидером в солнечной энергетике в 2013 году ввела в эксплуатацию солнечные батареи суммарной мощностью 3,3 гигаватта. На фоне этих цифр успехи Китая в области использования солнечной энергии выглядят особенно впечатляющими.

В 2010 году китайские власти ставили себе цель ввести в эксплуатацию к 2015 году солнечные батареи суммарной мощностью 5 гигаватт. Таким образом, первоначальный план уже был перевыполнен.

"Перевыполнение плана" во многом связано с развитием технологий. Цены на солнечные панели из года в год падают, делая возможным реализацию проектов, о которых было невозможно помыслить в прошлом.

График снижения стоимости кристалического кремния фотоэлектрических преобразователей, происходящего по закону Свансона (эффект Свансона) приведён ниже.

Эффект Свансона
Закон Свансона (эффект Свансона / Swanson effect) снижения стоимости кристаллического кремния фотоэлектрических преобразователей (фотоэлементов): по оси x - года; по оси y - стоимость кристаллического кремния фотоэлементов, $/ватт.

На графике чётко видно, что в 1977 году 1 ватт обходился в $76,67. К 90-му году стоимость кристаллического кремния резко снизилась, затем вплоть до 2008 года его стоимость падала незначительно. После 2008 года цена на "кремний" опять поползла вниз и в 2013 году составила $0,74 на Ватт.

Прогресс продолжается. Будем ждать светлого будущего, когда альтернативная энергетика потеснит традиционную, углеводородную...

Примечание: Закон Свансона (Эффект Свансона) - предположение, высказанное основателем корпорации SunPower, согласно которому стоимость фотоэлектрических преобразователей падает на 20% при каждом удвоении промышленных мощностей солнечной энергетики (Фактически стоимость фотоэлементов снижается наполовину, каждые 3 года).

З.Ы. Для сравнения:  мощность одной АЭС  2 - 4 ГВт.

donmigel_62: (кот - учёный)

Сугробы можно использовать для повышения эффективности солнечных батарей

В Асахикаве, что на Хоккайдо, по японским меркам бывает холодно — изредка до -41 °C. К тому же там периодически идёт снег, и из-за этого нога гелиоэнергетиков долго не ступала на тамошние земли...

...Но глобальная перестройка энергетики этой страны в итоге не оставила выбора, и, о чудо, местным специалистам частично удалось обратить суровый климат себе на пользу.

Казалось бы, с учётом географии этой страны стоило бы застраивать солнечными батареями Рюкю — места много более южные, бесснежные и получающие в полтора раз больше солнечной энергии за год, чем самый северный японский остров. Но, как мы уже писали, в Японии никто не ищет лёгких путей; оттого-то их и не находится.

Отражаясь от снега, лучи ещё несут достаточно энергии, чтобы на 6–10% увеличить выработку электроэнергии солнечными батареями. Будь на Хоккайдо зимой столь же солнечно, как на юге российского Дальнего Востока, эффект мог бы быть даже больше. (Здесь и ниже фото Nikkei BP.)

Чтобы обуздать «снеговой фактор», хоккайдовские энергетики с самого начала решили наклонить солнечные батареи покруче, на 40°, что, с одной стороны, снижает выработку энергии летом, а с другой — повышает зимой, когда в ней больше нужды. А самое главное — это позволяет снегу просто соскальзывать, без необходимости заделки силиконовым герметиком швов между панелями.


Но на небольшой гелиоЭС «Асахикава Хокуто» мощностью 1,25 МВт, запущенной в ноябре 2013 года, пошли дальше и попробовали обратить снег из врага солнечной энергетики в друга. Для этого — впервые для крупных электростанций такого рода — были использованы двусторонние фотоэлементы, у которых вместо непрозрачного подстилающего пластика с обратной стороны находится прозрачный слой, благодаря чему солнечный свет, отражённый от окружающего батарею снега, частично используется ею не с лицевой, а с задней стороны.

При этом общую толщину кремниевого слоя увеличивать нет нужды, что и позволяет производителю фотоэлементов, японской компании PVG Solutions, не задирать цены выше обычных.

Какова эффективность подобного решения? Обычно серийные однослойные кремниевые фотоэлементы дают КПД около 15–16%. А двусторонние солнечные батареи показали в эту зиму 18% — в период, когда поверхность под ними была покрыта снегом, и 16–17% — в бесснежные дни, когда количество света, отражавшегося от поверхности под фотоэлементами, падало. Хотя цифры кажутся пустячными, стоит учесть, что общие мощности солнечной энергетики по всему миру сейчас значительно превышают 100 ГВт, и подобная оптимизация на 6–10% в странах с бореальным климатом (где, вопреки экономической логике, вводят в строй основную часть солнечных батарей) резко подняла бы их отдачу зимой без необходимости применения дорогих многослойных систем.

Важно и то, что подобный двусторонний формфактор можно реализовать не только для кремния, но и практически для любого другого вида полупроводниковых материалов: достаточно сделать покрытие задней части батареи прозрачным.


Несмотря на зиму, солнечные батареи, установленные на высоте 1,8 м, остаются свободными от снега даже после многодневных снегопадов.

Как говорят специалисты «Асахикава Хокуто», результаты эксплуатации двусторонних фотоэлементов наводят их на мысль о целесообразности нанесения некоего недорогого белого покрытия из сравнительно гидрофобного, малопачкающегося материала, что обеспечивало бы повышение КПД солнечных батарей не только зимой, но и на протяжении всего года. После таяния снега гелиоэнергетики намерены провести эксперименты на эту тему, которые могут стать весьма ценным опытом для солнечной отрасли едва ли не любой страны со снежным климатом.

Подготовлено по материалам Tech-On!. Изображение на заставке принадлежит Shutterstock.

donmigel_62: (кот - учёный)

Blackfriars Bridge - самый большой в мире "солнечный" железнодорожный мост



Не так давно в Лондоне завершилось сооружение того, что без сомнений можно назвать самым большим в мире "солнечным" железнодорожным мостом. И с этим утверждением не поспоришь, ведь в мире не найдется мостов, покрытых солнечными батареями больших, нежели мост Blackfriars Bridge, который пересекает Темзу, соединяя южную часть Лондона с центральной частью этого мегаполиса.

Мост Blackfriars Bridge #2



Следует напомнить нашим читателям, что лондонская железнодорожная станция Blackfriars была открыта в 2012 году в преддверии Олимпийских Игр в качестве одного пункта из обширного списка мероприятий, направленных на решение проблемы транспорта во время проведения Игр. В настоящее время на крыше станции Blackfriars закончен монтаж 4400 фотогальванических элементов солнечных батарей, суммарная площадь которых составляет 6000 квадратных метров. В моменты пиковой энергетической отдачи эти солнечные батареи смогут отдать в энергетическую сеть 1.1 мегаватта энергии, чего, по мнению лондонцев достаточно для того, чтобы вскипятить 80 тысяч чашек чая -).

Следует отметить, что соотношение площади солнечных батарей к вырабатываемой мощности дает возможность вычислить суммарную эффективность системы, которая составляет скромные 9.3 процента. Это крайне мало по сравнению с 25-процентной эффективностью, которую демонстрируют солнечные электростанции, расположенные близ залитого солнечным светом юго-западного побережья Англии. Но тут стоит принять во внимание, что Лондон является далеко не самым солнечным местом в мире, и показатель эффективности "солнечного" моста Blackfriars можно считать своего рода рекордом для этой местности.

Мост Blackfriars Bridge #3


В любом случае, тех 900 тысяч киловатт-часов, которые в год будут вырабатывать солнечные батареи моста Blackfriars и которых хватит на удовлетворение половины энергетических потребностей железнодорожной станции, будет достаточно для того, чтобы уменьшить выбросы углекислого газа в атмосферу на 511 тонн ежегодно, что с учетом "напряженной" экологической обстановки в одном из крупнейших городов в мире, имеет очень немаловажное значение.
http://www.earthtechling.com/2014/01/in-london-a-record-breaking-solar-covered-bridge/
donmigel_62: (кот - учёный)

В Японии начинаются продажи готовых домов с 10-киловаттными солнечными батареями

16 января 2014 года Sekisui Heim Co., Ltd. из города Мито заявила о начале выпуска серийных каркасных домов, оснащённых фотоэлементами общей мощностью до 10 кВт.

В чем, собственно говоря, дело? Мы и так знаем, заметит утомленный «КЛ»-читатель, что в Японии солнечную энергетику внедряют, не считаясь ни с какими экономическими жертвами. И всё же это очень значимая новость, товарищи: дома на металлическом каркасе производятся едва ли не поточно, и интегрировать на их крыши солнечные батареи заметно дешевле, чем делать это потом. Наконец, сами крыши оптимизированы для установки значительного количества гелиоустройств.

Теоретически каждая Smart Power Station должна генерировать не один мегаватт-час в год. Не приведёт ли массовое внедрение таких домов к разбалансировке весьма компактных по размерам японских энергосистем и не пора ли уже строить больше ГАЭС? (Иллюстрация Sekisui Chemical).

Дома, которые компания претенциозно называет Smart Power Station, в стандартном варианте предусматривают монтаж на крыше фотоэлементов общей пиковой мощностью в 6,8 кВт (4,64 кВт «номинальной» в японских условиях) для модели с жилой площадью 130 м². Правда, есть и резервы: даже у модели площадью 114 м² можно смонтировать до 10 кВт солнечных батарей. Более того, для серий, собираемых на базе деревянного каркаса, предусмотрена специальная крыша с большими свесами с южной стороны, доводящая пиковую мощность гелиогенерации до 10 кВт даже для жилища в скромные 108 м². По утверждениям производителя, сборка заранее изготовленного дома на месте длится около суток.



Для компенсации отключений электричества ночью и в не солнечные дни предусмотрена небольшая литиевая батарея e-Pocket, ёмкость которой, к сожалению, не уточняется.

Производитель подчёркивает: с нынешним «зелёным» тарифом покупатель такого дома может продавать затем в сеть как часть своей генерации, так и её всю (?), причём в реальных японских условиях его доход будет неизменным 20 (!) лет подряд.

Солнечные батареи наклонены на 1°, так что между ними и крышей почти нет зазоров, куда может набиться пыль. Если это решение стоит признать разумным, то выбор собственно солнечных батарей — а это медно-индиево-диселенидные фотоэлементы — кажется нам не столь удачным.

Да, это тонкоплёночные элементы, которые хорошо подходят для установки на крышу, поскольку почти невесомы. Их КПД приближается к эффективности кремниевых батарей (15% для больших панелей), а энергоёмкость производства много ниже, да и стоимость тоже. А всё потому, что это прямозонный полупроводник, отчего он хорошо поглощает свет уже при микрометровой толщине, что для кремния малореально. В результате того же недешёвого индия тратится ничтожно мало, и на единицу мощности такая батарея получается весьма щадящей по цене.

Но у этих панелей есть и недостаток — очень малый опыт длительной коммерческой эксплуатации. Кроме того, они содержат компоненты, которые сами по себе не могут быть утилизированы без лишнего риска. Ещё важнее то, что в разработку кремниевых солнечных батарей сейчас вкладывается много больше игроков, чем в медно-индиево-диселенидные. Это значит, что инвестиции в производство последних рискуют проиграть гонку кремнию. Впрочем, эта же ставка, при всей кажущейся её рискованности, может обеспечить домам Sekisui Heim Co., Ltd. преимущество перед конкурентами...

«Конкурирующие» дома используют кремний-кремниевые фотоэлементы, которые на 20% эффективнее, но значительно дороже. (Иллюстрация PanaHome.)

Да-да, мы сказали «конкурентами»: в апреле прошлого года компания Panasonic начала малым тиражом производить дома Eco Cordis, тоже изначально наделённые солнечными батареями на крыше. В отличие от сооружений Sekisui Heim, они используют специфические кремниевые фотоэлементы HIT собственной разработки, в которых слой кристаллического кремния окружён тонкой оболочкой кремния аморфного (КПД 18,3%), что в теории делает их на 20% эффективнее медно-индиево-диселенидных, хотя и несколько дороже. На фоне общей цены домов с такими солнечными панелями разница по стоимости выглядит не очень заметной. Поэтому говорить о том, какой из двух продуктов выйдет победителем в конкурентной борьбе, пока рано.

Кстати, согласно данным Panasonic, доход от продажи производимого таким домом электричества по итогам 2013 года находится в районе $5 000 (в год), хотя подробности подсчётов, к сожалению, не сообщаются. Учитывая, что фиксированные тарифы для солнечных батарей в Японии сейчас согласовываются с домовладельцами на 20 лет, покупка такого жилища в каком-то смысле вполне выгодна: вне зависимости от того, насколько упадёт цена на геолиоэлектричество за эти двадцать лет, предприимчивый домовладелец получит примерно $100 000. Так что, кроме двух названных компаний, на этом рынке стоит ожидать появления и других игроков, причём в самое ближайшее время.

Подготовлено по материалам Tech-On!. Изображение на заставке принадлежит Shutterstock.

donmigel_62: (кот - учёный)

Солнечная энергетика в 2014 году: прогнозы аналитиков

IHS

Индустриальная аналитическая компания IHS недавно опубликовала информацию о том, как по ее мнению будет развиваться солнечная энергетика в 2014 году. И исходя из этих предсказаний, 2014 год станет ярчайшим для мирового рынка солнечной энергии. По мнению Аша Шарма, главы данного аналитического исследования: «После двухгодичного застоя, мировая индустрия по сбору солнечной энергии ожидает небывалый подъем».


Информационно-аналитическое агентство DigiTimes, цитируя отчет IHS, говорит о том, что фотоэлектрическая промышленность в 2014 году сможет выйти на уровень производства 40-45 гигаватт электроэнергии. Четыре года назад этот показатель был в более чем вполовину меньше. Однако благодаря резкому интересу к сбору солнечной энергии, потребность в строительстве новых солнечных электростанций в 2014 году будет расти.

Если точнее, то IHS ожидает, что к концу года, число этих электростанций будет в четыре раза больше, чем имеется сейчас. При этом многие из них смогут выйти на уровень производства 734 мегаватт электроэнергии из солнечного света.

С финансовой точки зрения нас тоже ожидают положительные сдвиги. Повышение общего числа солнечных электростанций и их мощностей позволит снизить цены на подобную электроэнергию примерно на 10 процентов. При этом инвестиции, вложенные в развитие фотоэлектрической промышленности увеличатся на 42 процента и составят внушительные 3,3 миллиарда долларов.

Новые фабрики по производству солнечной энергии откроются на Ближнем и Среднем Востоке, в Южной Америке, а также в многочисленных регионах Африки. И если в 2013 году мощности Латинской Америки позволяли производить 300 мегаватт солнечной энергии, то по мнению IHS к концу 2014 года этот показатель будет составлять уже 1,4 гигаватт.

Одними из самых активных стран, которые начнут строительство станций по сбору солнечной энергии в 2014 году могут стать Чили и Мексика. По мнению DigiTimes, в США в 2014 году будут по-прежнему вестись дебаты по поводу строительства подобных электростанций, но большого развития за этот период в стране не произойдет.

Китай и Япония продолжат освоение и развитие в этом направлении и в итоге станут крупнейшими станами по производству солнечной энергии. Тем не менее, по прогнозам, Китаю не удастся добиться запланированных показателей в 12 гигаватт.

IHS считает, что в долгоиграющей перспективе стоимость фотоэлектрических панелей будет постоянно снижаться и к 2020 году она будет на 40 процентов ниже, чем представляется сейчас. В виду снижения стоимости, повысятся шансы на то, что больше стран начнут задумываться о полном переходе на подобный источник энергии.



«Объем строительства фотоэлектрических электростанций в 2014 году увеличится вдвое. Повысятся инвестиции в эту сферу, стабилизируются цены на фотоэлектрические панели. Очень большую выгоду от развития этой индустрии получат развивающиеся рынки», — говорит Аш Шарма.



«Правда, наболевшие вопросы, связанные с государственной и политической поддержкой, а также споры о пользе столь стремительного роста, но в то же время малой прибыли от возобновляемой солнечной энергии, тоже никуда, к сожалению, пока не денутся».


      
donmigel_62: (кот - учёный)

Зачем делать фотоэлементы скользкими и тонкими?

В реальной жизни фотоэлементы сталкиваются с проблемами часто неожиданного характера, от решения которых тем не менее зависит сам факт их выживания на энергорынке. Справятся ли они с этими «вызовами повседневности»?
Все развитые страны, располагающие таким атавизмом, как производство солнечных батарей, находятся под колоссальным прессингом со стороны развивающегося мира. Называя вещи своими именами — в основном под давлением КНР. Европейцы уже запретили китайцам ввозить в ЕС такую продукцию дешевле чем по €560 за киловатт установленной мощности, а японцы недавно узнали, что в среднем импортные чайна-фотоэлементы обходятся островным потребителям на $480 за кВт дешевле, чем собственно японские. Но иначе и быть не могло, хотя здесь, конечно, интереснее другое: под бурным напором экспорта из Поднебесной задыхающаяся японская индустрия пытается хоть как-то оторваться от преследователя, и поэтому у неё получается кое-что весьма интересное.

Лёгкий шаг по раскалённым крышам

Такасагский завод летом, по сути, стал энергопродавцом, не говоря уже о снижении температуры крыши. (Фото Asahi Glass.)



Asahi Glass Co Ltd. в этом году решила оснастить крыши своего производственного комплекса в Такасаго солнечными батареями общей мощностью 5 МВт. Но вот беда: несущая способность значительной части крыш оказалась лишь 10 кг/м², а удельный вес стандартной солнечной батареи (благодаря защитному слою из стекла) равен 12,5 кг/м². Впрочем, это частая ситуация; в таких случаях батареи ставят реже, что снижает мощность «электростанции на крыше». В описываемом случае было решено пойти по другому пути, применив новые фотоэлементы Fujipream Corp, использовавшей стеклянное покрытие Leoflex производства той же Asahi Glass. Толщина такого стеклопокрытия при равной прочности равна всего 0,8 мм против 3,2 мм у нынешних кремниевых батарей. В итоге их удельная масса падает до 6,4 кг/м², и их смело можно монтировать почти на любой крыше, собранной даже из тонких листовых материалов.

Что не менее важно, теперь при креплении можно обойтись лёгкой рельсовой направляющей и зажимами, без необходимости дырявить крышу болтами, а сам процесс установки по времени сократился вдвое. Учитывая, что именно стоимость монтажа сегодня достигает трети цены фотоэлементных мощностей, это очень значимо для удешевления — настолько, что на этом фоне меркнет даже более высокая цена Leoflex. Впрочем, Asahi Glass утверждает, что массовое производство позволит серьёзно сбросить цену на Leoflex, ведь до сих пор продукт, по сути, был экспериментальным. С большой долей уверенности можно утверждать, что подобные облегчённые покрытия скоро начнут своё шествие и по остальном миру, удешевляя гелиомощности и повышая скорость их ввода.

В ряде областей лёгким фотоэлементам вообще нет адекватной замены: лёгкие средства транспорта, использующие энергию фотоэлементов для движения, часто весят считанные десятки килограммов. Солнечные батареи для них действительно полезны, благо покрывают до 60% энергопотребления, позволяя проехать много больше обычного. Но даже один квадратный метр фотоэлементов означает рост массы на 20% — а новые Fujipream-устройства снизят этот прирост вдвое.

Лёгкие батареи заняли значительную часть из 70 000 м² цеховых крыш. Это вызвало опасения производственников, ведь изготовление стекла — процесс, в котором выделяется огромное количество тепла, и для охлаждения помещений ранее использовались мощные разбрызгиватели водных капель, «поливавшие» крыши. Испарение жидкости охлаждало крышу, и вкупе с недешёвым кондиционированием воздуха помещений это снимало проблему. Предполагалось, что после установки фотоэлементов, из-за которых разбрызгиватели обессмыслились, затраты на охлаждение подскочат. Но на деле они уменьшились. Значительная часть энергии солнечных лучей преобразовывалась в электрическую, а другая часть переизлучалась в атмосферу в ИК-диапазоне, и в итоге температура в цехах даже упала, что позволило снизить затраты на кондиционирование: по сути, фотоэлементы как охладители оказались даже эффективнее былых разбрызгивателей!

Несколько неожиданная ситуация сложилась с эффективностью фотоэлементов в целом. При общей мощности в 5 МВт они генерируют в год 5,3 млн кВт, причём накопление пыли никак не влияет на эти цифры: панели установлены под углом 2°, из-за чего обычная дождевая вода смывает с них всё. Реальная энергоотдача оказалась даже несколько выше обещаний производителей, временами превышая потребности самой компании, особенно в летний полдень. Пользуясь ранее подключённой высоковольтной ЛЭП, Asahi Glass вынуждена продавать в сеть до 2 МВт выработки, по сути, из потребителя превратившись в одного из игроков энергорынка.

Рухнет ли солнечная энергетика под тяжестью снега?

Не менее интересные новинки можно увидеть на севере Японии. Климат там похолоднее, чем на юге европейской части России, то есть со снегом, который не даёт работать солнечным батареям, в тех местах всё в полном порядке. Для борьбы с ним можно увеличить угол установки батарей, однако пока в Японии не принято использовать фотоэлементы, отслеживающее положение солнца и постоянно меняющие угол наклона. Если же постоянный угол установки фотоэлементной панели сделать бóльшим (к примеру, 45°), то она покажет себя во всю силу даже зимой (солнце ходит низко). Правда, летом, когда светило стоит прямо над панелями, солнечные лучи, будут, так сказать, недоиспользованы. А уже при 35° снег с панелей почему-то сам не падает, что ставит энергобезопасность того же Хоккайдо под угрозу.

Обычно солнечным батареям под таким углом свобода от снега может только сниться. А секрет прост: силиконовая затирка в щелях между панелями (внизу), которые играют ключевую роль в удержании снега. (Фото Wakkanai City.)

Из-за этого 5-мегаваттная вакканайская гелиоэлектростанция провела ряд опытов с обычными солнечными батареями, и оказалось, что снег можно заставить соскальзывать даже с батарей под углом 30° — оптимальным для неподвижных панелей. Рецепт «модификации» до смешного прост: достаточно было затереть щели между стеклянными поверхностями панелей силиконовой затиркой из ближайшего строймагазина. Как подчёркивается, в заводских условиях это можно сделать гораздо быстрее и дешевле (хотя операция и так вышла недорогой), однако производители, по всей видимости, просто не задумывались над эксплуатацией фотоэлементов в условиях снежной зимы. В то же время опыт показал, что даже при таких «скользких» панелях «снежная» проблема не исчезает, а лишь из краткосрочной угрозы становится долгосрочной: по мере выпадения осадков снег, скатывающийся с панели, скапливается под ней, со временем закрывая её уже в качестве сугроба. Впрочем, подняв панель на тонких стальных опорах на 2-метровую высоту, о снеге можно забыть.

В итоге, рапортует мэрия Вакканая, этот самый северный японский город показывает коэффициент использования установленных мощностей гелиоЭС в 10,1–11,8%, при общенациональном в 12%. Для сравнения можно сказать, что вышеупомянутая такасагская ЭС при мощности 5 МВт вырабатывает за год почти столько же, сколько вакканайская. Иными словами, солнечные электростанции вполне совместимы со снегом, и он довольно слабо влияет на их работу в целом — если, конечно, установка проводилась осмысленно и с учётом местных особенностей. Значимость этого вывода трудно переоценить, в том числе и для России: Вакканай — место похолоднее, скажем, Саратова или Воронежа, не говоря уже о более тёплых российских регионах, и при этом куда более облачное.
http://techon.nikkeibp.co.jp/english/NEWS_EN/20131228/325380/

donmigel_62: (кот - учёный)

Solara - первый коммерческий атмосферный "спутник" на солнечной энергии

На одном из аэродромов, расположенных восточней города Мориарти, Нью-Мексико, находится огромный ангар под номером 76. Этот ангар является одновременно офисом и мастерской компании Titan Aerospace, где специалисты этой компании занимаются созданием высотных летательных аппаратов-роботов серии Solara, которые могут находиться в воздухе непрерывно в течение нескольких лет и летают только за счет энергии, получаемой от энергии лучей Солнца.

Первый из летательных аппаратов, Solara 50 будет иметь около 3 тысяч фотогальванических элементов, которыми будет покрыта вся поверхность его крыльев, размах которых будет равен 50 метрам.

Этот летательный аппарат предназначен для полета в стратосфере на высоте около 20 километров, где атмосфера всегда спокойна и постоянна. Летательные аппараты типа Solara называют атмосферными «спутниками» из-за того, что они могут выполнять множество функций, присущих космическим аппаратам, находящимся на низкой околоземной орбите. Это обеспечение покрытия широкополосных беспроводных коммуникаций и сотовой связи, высотная съемка, наблюдение, контроль государственных границ, наблюдение за атмосферой Земли и многое другое.


Но, в отличие от искусственных спутников, такие атмосферные «спутники» имеют гораздо меньшую собственную стоимость и стоимость их запуска. Кроме этого, в случае необходимости, высотный летательный аппарат может быть посажен на землю, где можно будет произвести его модернизацию, ремонт и замену оборудования.

И летательный аппарат Solara 50 станет первым коммерческим атмосферным «спутником», которые сможет выполнять большинство из вышеперечисленных функций. Первые испытания летательного аппарата Solara 50 будут произведены уже в этом году, а производство аппаратов будет начато в 2015 году.

Компания Titan Aerospace является далеко не первой компанией, которая работает в данном направлении. Пионером в этой области была компания AstroFlight, «солнечный» летательный аппарат которой поднялся в воздух в 1974 году. В 1980 году «солнечный» летательный аппарат компании AeroVironment пересек Ламанш, а в 2001 году летательный аппарат этой компании поднялся на высоту 29 километров и провел там около 40 минут времени.

А в 2010 году британская компания QinetiQ доказала полную работоспособность идеи длительных «солнечных» полетов с помощью летательного аппарата Zephyr, который провел в воздухе около двух недель.

20140102_3_2.jpg Рис. 1.

К сожалению, никакой из вышеперечисленных компаний так и не удалось коммерциализировать разработанные ими технологии. Это произошло в силу нескольких причин, к которым можно отнести низкую эффективность солнечных батарей, ограниченную емкость и долговечность аккумуляторных батарей, малую надежность сверхлегкой конструкции летательных аппаратов, которая с легкостью может быть повреждена при подъеме на высоту сквозь «бурные» нижние слои атмосферы.



«Если проследить историю подобных проектов, то можно заметить, что все такие летательные аппараты были разрушены, попав лишь в очень слабые атмосферные возмущения» – рассказывает Кевин Джонс (Kevin Jones), один из космических инженеров, работающих на американских военных.


Но ключевые технологии, необходимые для реализации долговременных высотных полетов, достаточно «назрели» к настоящему времени.

Эффективность солнечных батарей увеличилась с 10 до 40 процентов, а аккумуляторные батареи уже имеют высокую надежность и высокие показатели плотности хранимой энергии по отношению к весу активной массы батареи. Материалы, на основе соединений из углеродистого волокна, имеют весьма высокую прочность и малый вес, из них можно изготавливать конструкции летательных аппаратов, рассчитанные на длительную непрерывную эксплуатацию.

С учетом уровня развития современных технологий реализация высотных полетов, длительность которых исчисляется месяцами, уже реализуема. Более длительные полеты, с учетом прогнозов, станут возможны не ранее чем через несколько лет.



«Литиевые аккумуляторы, которые будут обеспечивать полет аппарата в ночное время, могут выдержать около 200 циклов, чего достаточно для непрерывного шестимесячного полета» – рассказывает Кевин Джонс, – «О более длительных сроках пребывания в воздухе можно будет говорить лишь тогда, когда появятся высокоэффективные технологии получения водорода из воды, его накопления и высокоэффективного его преобразования в энергию при помощи топливных элементов».




IEEE Spectrum

donmigel_62: (кот - учёный)

Об органической фотовольтаике замолвите слово. Часть 2

часть 1 - http://donmigel-62.livejournal.com/121956.html

В первой части сего длительного повествования было показано, что побороть кристаллического кремниевого монстра фотовольтаики будет очень не просто, в особенности, органическими молекулами, но так ли это на самом деле? Что есть такого в третьем поколении солнечных элементов, чего нет у предыдущих двух?!



Конечно, сейчас сложно говорить о каких-то конкретных цифрах, потому что сам рынок ещё формируется: спрос и предложение не уравновешено, технологии только-только перебираются из лабораторий на экспериментальные заводские площадки. Однако, как мы увидели на примере кристаллического кремния, в такой период времени очень сложно говорить о будущем технологии (помните, что цена на поликристаллические солнечные элементы упала в 3 раза за 7 лет?!).

А по сему, я постараюсь описать в большей степени не экономику производства и эксплуатации DSSC или органических солнечных батарей (ведь опять начнутся разговоры про EROI), а то, какой потенциал в них заложен и какие технологии применяются, чтобы сделать цену конечных устройств настолько малой, насколько это вообще возможно.

3-е поколение: будущее уже здесь!



Пожалуй, начнём мы по традиции, с некоторого ретроспективного анализа эффективности солнечных элементов, подготовленного NREL – The National Renewable Energy Laboratory.


Ретроспективный анализ наилучших показатели эффективности солнечных элементов всех известных типов

На графике приведен целый класс “emerging PV”, т.е. те самая группа альтернативных методов, которые, как упоминалось в первой статье, могут выстрелить в любой момент. Но начнём по порядку.

Roll-to-Roll process или напечатай меня как газету
Пожалуй, одной из наиболее значимых характеристик третьего поколения солнечных элементов является то, что их можно печатать.

Стоит пояснить. Для двух предыдущих поколений солнечных элементов, чтобы получить работающую панель необходимо создать, так или иначе, p-n-переход (за пояснениями смело сюда), а это значит, что необходимо высоковакуумное оборудование, герметичность производственной линии и так далее по списку – всё как во взрослой жизни. При этом пластина едет по конвейеру от одного конца до другого, прирастая p-n-переходами и контактами. Есть ещё и проблема совмещения (или алаймента) масок, используемых для травления и создания 3D структуры (фактически, как в процессорах, только техпроцесс не нанометры, а микрометры и миллиметры). И как бы было хорошо всё это безобразие заменить на что-нибудь попроще…

О чудо, такой процесс уже используется десятилетиями для печати полиграфической продукции. С небольшими модификациями мы могли бы заменить чернила на какие-нибудь фотоактивные органические молекулы – полупроводники и проводники – а рисунок на барабане разбить на соответствующие отдельным фотоэлементам площадки. И, вуаля, штампуй – не хочу!

При этом можно существенно уменьшить как вес таких элементов, так и количество используемых материалов, ведь в кремниевой батарее кремний является и подложкой и активным компонентом, а сделать подложку бесконечно тонкой невозможно, она обязана обладать хоть каким-то минимальным набором механических характеристик.

Как же это работает на практике?! В том же KIT есть не так называемый «центр трансфера технологий», а совершенно настоящий и работающий, в котором осуществляются:
а) исследования, направленные на улучшение характеристик батарей, при этом существует прямая обратная связь с учёными и инженерами, разрабатывающими технологии;
б) участок прототипирования, который отрабатывает принципиальную масштабируемость технологии;
в) уже полупромышленный участок, где за пару минут можно сделать погонные метры и сотни метров солнечных элементов.


Структура трансфера технологий из лаборатории на производство. KIT и TU Darmstadt совместно с BASF, Merck

Заметьте, центр не просто при двух университетах, но в нём активно участвуют производители, которые, возможно, раньше или позже запустят эти разработки на своём производстве.

Публика, мне кажется, подустала чуть-чуть, поэтому видео работы упомянутой лаборатории в живую на YouTube:



И одной из наиболее значимых областей применения данного процесса является как раз органическая фотовольтаика.

Органическая фотовольтаика
Как бы ни смешно это прозвучало, но в мире органической химии царит своя атмосфера безудержного веселья. Например, среди органических молекул можно найти изоляторы, проводники, полупроводники и – даже страшно подумать – сверхпроводники. Некоторое время назад вообще считали, что органические материалы вытеснят всё, в том числе и бетон, и арматуру, и машины будут из карбона…но не сложилось…

Как мог бы выглядеть органически фотоэлемент?! И каковая может быть его толщина?
Например, если хотите, то толщиной в 1 микрометр (в 50 раз тоньше человеческого волоса!):


Устройство отдельного органического солнечного элемента и материалы, используемые для его создания

Обычно требуется, чтобы акцептор электронов (absorber) и молекулы донора (hole conductor) взаимно проникали друг в друга, формируя так называемый объёмный гетеропереход (bulk heterojunction). Так как реакция разделения электрон-дырочной пары происходит на поверхности, то за счёт взаимного проникновения двух фаз одна в другую и увеличивается эффективная площадь контакта (показано на картинке справа), а это в свою очередь соответствует максимальной эффективности такой батареи.

Подложка не обязательно должна быть стеклянной: и катод и анод могут быть выполнены по любой доступной технологи, в том числе и на основе проводящих полимеров, что позволяет в полной мере реализовать преимущества roll-to-roll process.

Да, к глубокому сожалению, должен констатировать, что эффективность у данных батарей не велика до 7-8%, но это всё из-за того, что представленные выше молекулярные мотивы не поглощают во всём диапазоне длин волн от УФ (ультрафиолетового, 300-400 нм) до ИК (инфракрасного 800-1000 нм).

С одной стороны это является проблемой, необходимо придумывать более хитрые схемы с двумя совмещёнными батареями, так называемые тандемные солнечные элементы (tandem solar batteries), либо просто сделать батарею полупрозрачной и наклеить на окно.

В случае с тандемными солнечными элементами мы просто имеем два последовательно подключённых солнечных элемента, которые поглощают в двух разных диапазонах, например, зелёном и красном. За счёт этого фактически удваивается эффективность, потому что больше фотонов превращается в ЭДС и ток. Однако главная проблема в данном случае – промежуточный слой, необходимый для комбинирования избыточных зарядов. Понятно, что если слой будет накапливать заряд, то из-за внутренних потерь это снизит эффективность.


Принцип работы тандемной солнечной батареи: два последовательно соединённых органических солнечных элемента


Пример спектра поглощения двух органических веществ, используемых при производстве тандемных солнечных элементов

На этом моменте можно было бы углубиться в материаловедение, но я этого не буду делать, просто хочу сказать несколько слов в защиту высокоэффективных батарей и процесса их разработки, что это не пустая трата бюджетных средств. Нельзя просто так взять, намазать пасту ровным слоем на подложку, потом второй слой, третий, наклеить контакты и сказать, что готово, приговаривая: «Ладно, и так сойдёт!» (с) И не будем показывать пальцем, где этим любят позаниматься. Но за каждым процентом эффективности стоят патенты, специальные добавки, меняющие упаковку молекул таким образом, чтобы добиться наилучшего проникновения одного компаунда в другой. Для того, чтобы описать такие процессы, почему вещество А помогает, а вещество Б нет, крайне необходима фундаментальная наука со всеми её недостатками, пороками и установками, стоимостью в миллионы и миллиарды долларов.

Dye Sensitized Solar Cell (DSSC)

Солнечные батареи, сенсибилизированные или «активированные» красителем, известны миру достаточно давно. Однако лишь недавно, как уже упоминалось в предыдущей статье, они смогли успешно взять психологически важный барьер в 15% эффективности. На настоящее время это является абсолютным рекордом среди солнечных батарей данного класса. Принцип работы батарей детально представлен в указанной выше публикации, поэтому не будем на нём останавливаться.

Обычно для производства DSSC необходима стеклянная подложка с токопроводящим покрытием, как то ITO (оксид олова, допированный индием) или FTO (оксид олова, допированный фтором), что отъедает существенную часть расходов на производство. Однако стоит справедливо заметить, что данные батареи потенциально могут быть адаптированы к печати посредством процесса roll-to-roll, о котором говорилось выше.

И вновь хочется повториться, что область применения таких элементов питания не генерация МВт электроэнергии, а скорее эстетично-практичная, как и в случае с прозрачными органическими батареями – снижении общего энергопотребления, при сохранении высоких стандартов жизни. То есть наклеили батарею на окно, она вам за сутки АКБ зарядила, к примеру…

Пока готовилась данная статья, неожиданно пришло известие с пометкой срочно в номер!


Breaking News



Строящийся сейчас конференц-центр EPFL (SwissTech) оснастят стеклянным фасадом на основе DSSC. Прозрачные разноцветные панели солнечных элементов Гратцеля в данный момент устанавливаются на западной стороне SwissTech центра, открытие которого запланировано на апрель 2014 года. Солнечными батареями, общее число которых составляет 1 400 штук при размерах 35 на 50 см, оснастят более 300 м2 фасада здания. Сами элементы выполнены в пяти оттенках красного, зелёного и оранжевого цветов, что, по мнению архитекторов и дизайнеров, создаёт тёплый и в то же время живой внешний вид.

Стоит отметить, что проект такого рода – первый в мире. Солнечные элементы сконструированы таким образом, что не теряют эффективности при изменении угла падающего на них солнечного света, к тому же они не только позволяют вырабатывать электричество, но и защищать внутренние помещения от прямых солнечных лучей, что приведёт к снижению потребность в кондиционировании воздуха. Сообщается также, что не менее 11 фирм-производителей уже получили лицензию на производство солнечных батарей Гратцеля.



И на последок, чтобы не быть голословным, приведу несколько примеров компаний, которые работают в области альтернативных солнечных элементов:

Konarka. Компания просуществовала с 2001 по 2012 года и занималась как DSSC, так и органическими солнечными батареями на основе фуллеренов. За время своего существования компания создала 350 патентов в рассматриваемой области, привлекла более 150 млн. $ частных инвестиций и 20 млн. $ государственных грантов на разработку и организацию производства. Были разработаны солнечные элементы с гарантированным сроком службы 3 года при зарегистрированной эффективности в 8%. К сожалению, в середине 2012 года компания объявила о банкротстве.

Heliatek. Компания основана в 2006 году специализируется на органической фотовольтаике, но держится на плаву более успешно. В числе прочих достижений тандемные батареи с эффективностью 12% за счёт правильно подобранной геометрии:


Слайд с сайта компании Heliatek

И между прочим в ближайшие 4 года эффективность планируется увеличить до 16%:


Слайд с сайта компании Heliatek

Что же касается DSSC, то даже такие гиганты, как Sony и Samsung обращают своё внимание в сторону DSSC, при чём планируется, что массовый выпуск продукции позволит сократить до 1/3-1/5 стоимость модулей по сравнению с обычными кремниевыми батареями. В Соединённом Королевстве есть множество компаний, занимающихся данной тематикой (например), так что про умельцев из Поднебесной я вообще промолчу (например).

Вместо заключения


Вначале я хотел написать объёмное заключение, что «альтернативной» некремниевой фотовольтаике быть, что важны технологии, и как они связывают воедино разные области знаний, в конечном продукте, но…

Безусловно, я согласен с BarsMonster, что главная проблема сегодняшней альтернативной энергетики (любой!!!, попрошу заметить) – хранение произведённой электроэнергии и, главное, стоимость такого хранения. Или иными словами непоястоянство данного источника. Это не АЭС, которыми в Бельгии дороги освещают даже днём. Однако мне кажется, что мы не вполне верно рассматриваем структуру энергопотребления с нашей сложившейся уже точки зрения, вот где кроется основной порок всех холиваров на данную тему. Необходимо изменить своё сознание и посмотреть на проблему абстрагированным взглядом.

Но, как бы ни парадоксально и вычурно это звучало, мы живём в эпоху поистине великого перехода от века кремния, к веку углерода; и те тенденции, которые сейчас мы наблюдаем (графен, УНТ, органические светодиоды и органическая фотовольтаика) тому весомое доказательство. Пройдёт ещё совсем немного времени, и ни одно здание не будет спроектировано (по крайней мере, в ЕС, США, Японии) без солнечных панелей Гратцеля на окнах, способных ощутимо снизить и практически привести к нулю энергобаланс сооружений. Задняя панель iPhone или моей Xperia Z покроется 2 микронной органической батарей, которая будет подзаряжать телефон везде, где есть источник света, а электромобили вообще превратятся в одну большую передвигающуюся солнечную батарею. И я хотел бы оказаться в этом энергетическом раю, где энергия Солнца доступна всем и каждому…

А Вы?!

http://habrahabr.ru/post/202836/
donmigel_62: (кот - учёный)

Об органической фотовольтаике замолвите слово. Часть 1


В середине июля 2013 года в славном городе Эриче, что расположен в дали от цивилизации на горе на западе Сицилии, проходила прелюбопытнейшая научная школа «Наноструктуры для оптики и фотоники» (или Nano-Structures for Optics and Photonics). Один из докладов по счастливому стечению обстоятельств оказался «Органическая фотовольтаика» (Organic photovotaic), представленный профессором Ули Лемерром (Uli Lemmer) из Института Технологий Карлсруэ (Karlsruhe Institute of Technology – KIT).

Итак, быть или не быть «альтернативной» фотовольтаике?

Введение

Пару месяцев назад была опубликована исполненная пиетета статья о солнечных элементах Гратцеля, но в комментариях встретил закономерное недоверие и скепсис по поводу оправданности вложений в такие солнечные элементы. Основная мотивация оппонентов – недостаточная производительность или эффективность таких элементов по сравнению с кремниевыми, мол, EROI совсем плох. Хотя некоторые оценки собраны и представлены в Wiki, но это как средняя температура по больнице. А по сему, опираясь на данные представленные профессором Лемерром, я хотел бы рассказать чуть более подробно о «альтернативной» или – если угодно – не кремниевой фотовольтаике, но сначала всё же придётся окунуться в мир цифр для нормальных кремниевых батарей, чтобы понимать, к чему стремиться. И эта статья имеет своей целью некоторый обзор уже сформировавшегося рынка кремниевых солнечных элементов.


Сразу хочу сделать две немаловажные оговорки. Во-первых, KIT славится тем, что имеет фактически свои производственные линии, на которых зачастую обкатываются технологии и мнение вышеупомянутого профессора, я полагаю, таки авторитетно. Во-вторых, ЕС диверсифицирует разработки, и это заложено во многих рамочных программах. Что же это значит? А значит это, что если даже вы разработали солнечную батарейку с КПД 5%, вы сможете получить финансирование на продолжение исследований, если, конечно, 5% не являются теоретическим (термодинамическим) пределом.

И последнее, я буду всё время это упоминать, так или иначе, по ходу повествования: стоимость инвестиций (Investment costs) в €/Вт, которая может быть уменьшена двумя способами – снижением стоимости производства или увеличением эффективности солнечных батарей.

Есть ли свет после кристаллического кремния?



Полагаю, что один из самых взвешенных обзоров на Хабре был подготовлен BarsMonster, поэтому долго на это теме останавливаться не будем.

Итак, что же такое «альтернативная» фотовольтаика в сравнении с «классической»? Или как разбить на поколения известные солнечные элементы? Это очень просто:

  1. Солнечные элементы на базе кристаллического кремния (EFG – Edge Defined Film fed Growth, RGS – Ribbon Growth on Substrate). Самые древние, можно сказать каменные век. Первые разработки можно отнести к заре эры микропроцессорной техники – конец 60-х, начало 70-х.
    Немножко теории

  2. Тонкоплёночные солнечные элементы, такие как аморфный кремний, кремниевые плёнки, различные варианты экологически «небезопасных», но интенсивно производящихся на настоящий день, на основе кадмия и теллура. Получили толчок к развитию вместе с кремниевыми, но лишь в конце 80-х, начале 90-х перешагнули 10% барьер эффективности.

  3. Альтернативная фотовольтаика, включающая в себя DSSC (сенсибилизированные солнечные элементы или солнечные батареи Гратцеля habrahabr.ru/post/192468/), гибкие органические батареи (на основе олигомеров и полимеров), в том числе и тандемные солнечные элементы, а также диковинный пока подвид – солнечные элементы на основе квантовых точек (наноразмерных частиц полупроводников).



Фотовольтаика не совсем полно, но наглядно. Источник.

И логичный вопрос: а где же тогда место этой альтернативной фотовольтаике? Как уже было сказано, в голове надо держать два параметра: эффективность и стоимость производства, что влечёт за собой удешевление электроэнергии, выработанной такой батареей в €/Вт. Как мы можем видеть из приведённых ниже графиков кристаллический кремний, пожалуй, по всем параметрам наиболее перспективный материал для солнечных элементов. Особенно в долгосрочной перспективе, когда его стоимость инвестиций может быть уменьшена до 50 центов и ниже за Вт. Однако стоит заметить, что получение такого высокочистого или «солнечного» кремния связанно с огромными экологическими рисками, о которых в ЕС и США особенно сильно пекутся. Ах, да, через 5 минут будет сказано с саркастической улыбкой, что производство кадмий-теллуридных, CdTe, батарей растёт – парадокс, но оставим его на совести Гринписа и администрации стран-производителей…


Оценки эффективности и стоимости инвестиций для различных типов солнечных элементов в крастко-, средне- и долгосрочной перспективе.

Конечно, на сегодняшний день даже аморфный кремний (производство дешевле и не требует «серьёзной химии») хоть по стоимости и сопоставим с кристаллическими аналогами, но всё ещё не обладает достаточной эффективностью, чтобы побороться за какой-то лакомый сегмент рынка. Но что интересно на этой диаграмме: некремниевые солнечные элементы изначально обладаю гораздо более низкой стоимостью инвестиций и, соответственно, более низкой стоимостью полученной с их помощью электроэнергии. Это как раз и даёт надежду исследователям и инвесторам, что в будущем, можно за счёт использования таких процессов как roll-to-roll (читайте, как газету печатать) существенно снизить издержки при производстве таких элементов. Но об этом я расскажу во второй части, посвящённой альтернативам.


Пример солнечного элемента первого поколения – поликристаллический кремний

Но и это ещё не всё, в случае с гибкими солнечными элементами, а таких, большинство в группе альтернативных, есть очень много потенциальных областей применения: от умной одежды, которая будет заряжать ваш мобильник в солнечную погоду (например), до тентов и навесов, способных запитать небольшой чайник на природе.


Панели солнечных элементов второго поколения

С учётом специфических условий эксплуатации – в полях, так сказать – а также принимая во внимание стремление всех ведущих производителей мобильной техники уменьшить толщину смартфона или ультрабука в ущерб времени автономной работы, то согласитесь данный сегмент рынка может выстрелить очень и очень быстро.

Но вернёмся от фантазий о рае будущего на нашу грешную землю, точнее, к традиционным солнечным элементам.

Состояние современного рынка солнечной энергетики.

Что касается каких-то более точных цифр для солнечных элементов первого поколения, то они были представлены в виде понятного даже детям рисунка:


Номинальные параметры традиционных солнечных элементов

При этом стоимость модуля на 54 Вт обычно не превышает 60 евро, а каждый кВт*ч полученной энергии обходится потребителю менее чем в 50 центов. Сроки эксплуатации огромны – обычно это десятки лет (25-30 лет является нормативом), если не происходит чего-то экстраординарного – потопы, ураганы, русские крещенские морозы и т.д. Ну а затем батареи разбираются, перерабатываются и из них изготовляют новые.

Далее я хотел бы привести немного статистики. Конечно, доля моно- и поли-кристаллических батарей огромна и суммарно отъедает до 90% рынка, но посмотрите, как с начала 2000-х выросла доля CdTe-батарей (экологи – ха-ха), как медленно, но верно начали прорастать другие технологии, в том числе и альтернативные виды фотовольтаики (в данном случае отмечены, как others). И всё это происходит не в жирные годы экономического роста, когда деньги на научное колесо льются рекой, а сейчас, на наших глаза, когда в ЕС и США всё ещё продолжается рецессия.


Доли рынка солнечной энергетики для различных видов батарей

Что ж можно сравнить с данными, приводимыми в Wiki – хорошее совпадение:


Где и что производят и ставят?

Конечно, можно было бы уже догадаться, что, как и в известной шутке:
"– Какие три самые популярные слова на планете?
– Мир, труд, май
– Нет, Made in China
", – большая часть производства солнечных элементов сосредоточена в Китае. По состоянию на 2011 год – больше половины всех произведённых модулей за тот год имеют шильдик: Made in China.


Годовое производство солнечных элементов первого поколения

Тогда как основной потребитель готовой продукции – это, как ни странно, матушка Европа. Среди европейских стран бесспорным лидером является Германия, вслед за которой в эру использования Солнца, как универсального источника энергии, пытается заскочить Италия, что обусловлено, по большому счёту, благоприятным климатом. Хотя, например, на Сицилии, где проводилась школа, преимущество отдано ветрякам.

Хочется также заметить, что, например доля Испании, где климат благоприятствует развитию солнечной энергетики, практически не наращивает установленной мощности солнечных элементов с 2008 года, тогда как даже Китай существенно увеличил этот параметр за тот же период.


Суммарная установленная мощность солнечных элементов первого поколения

Коль скоро Германия в ЕС является наиболее значимым потребителем альтернативных источников энергии, в целом, и солнечной, в частности, то за прошедшие 7 лет можно оценить степень падения цен на модули. Так если средняя розничная цена системы, устанавливаемой на крышу, была около 5 100 евро за кВт пиковой мощности, то во втором квартале 2013 года она упала до 1 700 евро. В 3 раза за 7 лет! Неплохой результат, надо отметить.

Так же хотелось бы обратить внимание на четвёртый квартал 2008 года. В США полыхает кризис, в ЕС закрываются банки, казалось бы, цены должны остаться на уровне Q4 2008 и никуда не двигаться, ведь предприятия закрыты, пароходы списаны, а денег в банках нет. Но оказалось совершенно наоборот, через год после начала кризиса цена упала на 30% до менее 3 000 евро за КВт.


Стоимость кВт пиковой мощности в евро в течение последних 7 лет без учёта НДС, так как НДС может меняться даже между федеративными землями в ФРГ

И в заключении хотелось бы представить расчёты стоимости выработанной электроэнергии таким кремниевыми солнечными элементами. Если взять представленный выше суммы за солнечную панель, срок службы солнечной панели в 20 лет, 5% в год затраты (например, 4% процент по кредиту и 1% стоимость обслуживания самой батареи), то получится следующее распределение стоимости произведённой электроэнергии центах за кВт*ч:


Стоимость выработанной солнечной панелью электроэнергии в центах за кВт*ч: по горизонтали – средняя степень освещённости местности, по вертикали – рыночная стоимость солнечной панели в долларах за кВт пиковой мощности (Источник)

Промежуточное заключение


Что же мы имеем в итоге? На данный момент рынок кремниевой «классической» солнечной энергетики сформирован, доля кристаллического кремния составляет более 90%, и основных игроков на нём уже трудно будет потеснить (а в основном это Китай, ЕС, Япония и США).

Какова цель или почему государства «донатят» программы по солнечной энергетики? Причина довольно прозрачна: максимально диверсифицировать структуру энергопотребления, развить технологии и, в ряде случаев (Германия, например), снизить зависимость экспорта из соседних регионов (из России, в частности).

Как в этих условиях жить и развиваться «альтернативным» типам солнечных элементов, о которых было упомянуто в самом начале? Есть ли место в тени поликристаллического кремния? Или всё это баловство, которое ни к чему не приведёт? Я постараюсь дать ответ через призму тех технологий, что разрабатываются в настоящий момент.

И как с этим справится наш герой?
Мы переходим к картине второй http://donmigel-62.livejournal.com/122314.html


http://habrahabr.ru/post/202650/
donmigel_62: (кот - учёный)

Космическое оригами - солнечные панели

Благодаря технике оригами ученые создали уникальные космические солнечные панели.

То, что обычно можно делать из бумаги, используя технику оригами, оказывается можно делать из совершенно иными объектами, к примеру на основе данной техники можно создать высокотехнологичные космические солнечные панели.

Подобные панели могут значительно облегчить запуск космических аппаратов, поскольку делают их менее затратными. Как известно, запустить что-либо в космос, даже если это миниатюрный спутник в виде куба, стоит баснословных денег. Солнечные панели помогают удешевить функционирование космических аппаратов в космическом пространстве. Чего-чего, а солнечной энергии в космосе предостаточно.

Большинство космических солнечных панелей при запуске должны быть максимально хорошо сложены. При этом они открываются тогда, когда аппарат добирается до своего места назначения. При помощи техники оригами инженерам удалось создать максимально компактные солнечные панели, которые практически не ощутимы при запуске. Однако когда они раскрываются, то приобретают довольно большую площадь, что обеспечивает достаточное количество накаляемое ними количество солнечной энергии для функционирования космического аппарата.


Эти инновационные солнечные панели по технике оригами были созданы инженерами Университета Бригама Янга при тесном сотрудничестве с Лабораторией Реактивного Движения (NASA).
donmigel_62: (кот - учёный)
Оригинал взят у [livejournal.com profile] solar_front в Похоже на прорыв.
Производство графена на кремниевых подложках.

Написано после прочтения заметки Декстера Джонсона.
После открытия графена основной фокус исследований был в области демонстрации свойств этого уникального материала и областей применения. Похоже наступило время эффективного производства графена.
На производственном фронте исследователи, кажется, пытаются применить "природные" механизмы роста пленки. Так, например, появилось предложение использовать механизм “естественного отбора” или использовать алгоритм схожий с тем который используют жуки и древесные лягушки при передвижении по слегка затонувшим кочкам- листьям (National University of Singapore (NUS)), и перенести это в производство высококачественного графена на кремнии.
Исследователи из NUS опубликовали в журнале Nature  статью - Face-to-face transfer of wafer-scale graphene film, где предлагается выращивать графен посредством химического парофазного осаждения (CVD) на меди и затем переноса их. В то время как процессы CVD позволяют осаждать высококачественный графен (хотя до настоящего времени не настолько хорошему как полученному механическим расколом графита — так называемым: “скотчем” методом), и предполагает производство на "бесконечном" носителе (roll-to-roll), снятие графеновых пленок с меди чрезвычайно сложная операция из-за загрязнения пленки медью.
Исследователи из NUS  использовали метод когда графен выращен на медном слое, тогда как медь находится на кремниевой подложке. Вместо того, чтобы отслаивать графен от меди, медь вытравливается. Графен прикрепляется к кремнию пузырьками образуя капиллярые мостики. Это механим схож с тем, который позволяет жукам, и лягушкам держаться на  притопленных листочках. Чтобы получить этот эффект, когда графен  не отслаивается во время травления меди —  необходим поток газа на крмниевую подложку.
“Прямой рост графенового фильма на кремниевой вафле полезен для предоставления возможности многократных оптикоэлектронных заявлений, но текущие научно-исследовательские работы остаются основанными на стадии доказательства понятия”, говорит профессор Ло Кянь Пин, который возглавляет Отдел Химии в Отделении естественных наук НУСА в пресс-релизе. “В методе передачи, служащем этому сегменту рынка, определенно необходимы и пренебрегли в обмане для гибких устройств”.
Команда НУСА полагает, что метод передачи “лицом к лицу” был бы полезен в пакетно обработанных поточных линиях полупроводника.
donmigel_62: (кот - учёный)
ЦВЕТНОЙ ПЛАСТИК ОБЕСПЕЧИТ ЭЛЕКТРОЭНЕРГИЕЙ.

Тонкий лист пластика, пропитанного флюоресцентным красителем и множеством наноточек из арсенида галлия, способен стать отличным выбором для энергообеспечения носимой электроники.
http://www.technologyreview.com/sites/default/files/images/solar.plasticx299_0.jpg

В Иллинойсском университете в Урбане и Шампейне (США) создана гибкая солнечная батарея, которая представляет собой пластиковую подложку, пропитанную специально подобранным флюоресцентным красителем. Поглощая солнечный свет, краситель сам начинает светиться, вот только свет от него не может уйти наружу и почти полностью остаётся внутри солнечной батареи. Под ним располагаются разбросанные на значительной площади наноточки из арсенида галлия, способные превращать солнечный свет в электричество с КПД до 40%.



Напомним, что доминирующие на рынке кремниевые фотоэлементы «в норме» облают лишь 20-процентной эффективностью — а следовательно, новые фотоэлементы... лучше нынешних вдвое?

Что не менее важно, это не твёрдые пластинки, покрытые стеклом, а гибкие и почти невесомые пластиковые поверхности, которые можно легко интегрировать в одежду или головные уборы и использовать для подзарядки понятно чего — портативной электроники.

Но как быть с дороговизной арсенида галлия — в сравнении с монокристаллическим кремнием? Именно поэтому и использован пластик, пропитанный красителем, парируют разработчики, ведомые Джоном Рождерсом (John Rogers). По сути, краситель концентрирует свет на наноточках арсенида галлия, позволяя им конвертировать в электричество излучение, падающее на внушительную площадь, и используя при этом «ничтожно малое количество» столь дорогого полупроводника.

«Это намного дешевле того, что вы могли бы иметь, располагая тем же КПД, полностью покрыв поверхность активным фотоэлементным материалом», — подчёркивает г-н Роджерс.


Потенциальные приложения? Разработчики уверены, что начать стоит с тех объектов-предметов, где важно получение максимального количества энергии с единицы площади и с любым углом падения лучей. В частности, это могут быть солдатские каски, от которых запитывается носимая бойцами электроника (группа г-на Роджерса тесно общается с военными), или головные уборы и одежда простых граждан, прогуливающихся в обществе своих прожорливых планшетов-и-смартфонов.

К слову, новые концентрирующие фотоэлементы, как заявляется, абсолютно совместимы с гибкой электроникой на кремниевых пластинах толщиной всего в 100 нм, ранее уже показавшей свой потенциал при многократных растягиваниях и сгибаниях во всех направлениях.

Отчёт об исследовании был представлен на конференции Общества материаловедческих исследований, прошедшей в Бостоне (США) на этой неделе.


http://www.technologyreview.com/news/522156/colored-plastic-doubles-solar-cell-power/
donmigel_62: (кот - учёный)

Принтер стоимостью $200 тыс. печатает солнечные батареи на прозрачной полимерной подложке шириной 30 см с помощью полупроводниковых «чернил». Производительность установки - до 10 метров в минуту. Производительность полученных органических фотоэлектрических элементов - до 50 Вт/м2.



http://www.csiro.au/en/Portals/Media/Printing-Australias-largest-solar-cells.aspx

Profile

donmigel_62: (Default)
donmigel_62

March 2014

S M T W T F S
       1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 1819202122
23242526272829
3031     

Syndicate

RSS Atom

Style Credit

Expand Cut Tags

No cut tags